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Abstract 
For many years information security and risk management has been an art rather than a 
science. This has resulted in the reliance on experts whose methodologies and results can 
vary widely and which have led to the growth of fear, uncertainty and doubt within the 
community. At the same time, the failure to be able to effectively expend resources in 
securing systems has created a misalignment of controls and a waste of scare resources 
with alternative uses. This paper aims to introduce a number of models and methods that 
are common in many other areas of systems engineering, but which are only just starting 
to be used in the determination of information systems risk. This paper introduces the 
idea of using neural networks of hazard data to reliably model and train risk systems. 
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1. Introduction 
This paper presents and extends the major statistical methods used in risk 

measurement and audit, and extends into other processes that are used within systems 

engineering (Elliott, Jeanblanc, & Yor, 2000). Security risk assessment is fundamental to 

the security of any organization (Grandell, 1991). It is essential in ensuring that controls 

and expenditure are fully commensurate with the risks to which the organization is 

exposed. The paper starts with defining risk and the terms; next it explores a few of the 

methods used. 

The equations presented in this paper can be used by organizations in order to 

quantify the relative risk of various solutions and systems and hence to assign risk 

strategies using the historical data and the organization as well as that of third parties 

providing a means to optimize audits and system reviews in a manner that detects an 

incident in the most economical fashion. Projects are all risk consequential endeavors and 

if our profession can better manage and calculate risk, society will be at an advantage. 

The paper defines processes as being the methods that are utilized in order to 

achieve a set of desired objectives. What is needed is to know just how these processes 

are implemented within an organization. An objective on the other hand is a goal or 

something that people desire to have accomplished. It is important to ask just who sets 

these objectives and how they are designed if risk management solutions are to be 

achieved effectively and economically. 

Controls are the mechanisms through which an individual or group’s goals are 

achieved. Controls are useless if they are not effective. As such, it is important to ensure 

that any control that is implemented is both effective as well as being justifiable in 

economic terms. Controls are the countermeasures for vulnerabilities but they need to be 

economically viable to be effective. There are four types:  

1. Deterrent controls reduce the likelihood of a deliberate attack  

2. Preventative controls protect vulnerabilities and make an attack unsuccessful or 

reduce its impact  
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3. Corrective controls reduce the effect of an attack  

4. Detective controls discover potential (attempted) or successful attacks and trigger 

preventative or corrective controls. 

1.1. Identifying classify risk. 
A risk analysis is a process that consists of numerous stages. Some of these are 

defined below: 

• Threat analysis, 

• Vulnerability analysis,. 

• Business impact analysis,  

• Likelihood analysis (the probability of an event), 

The Risk analysis process should allow the organization to determine the risk for 

an organization based on threats and vulnerabilities. From this point, the auditor will be 

able to classify the severity of the risk and thus assign an overall importance to each risk. 

It should be feasible to use this information to create a risk management plan (Wright, 

2008). This should consist of: 

• Preparing a risk treatment plan using a variety of control methods. 

• Analyzing individual risks based on the impact of the threats and 

vulnerabilities that have been identified from the risks. 

• Rate the individual risks from highest to lowest importance. 

• Create a risk treatment plan that categorizes each of the threats and 

vulnerabilities in order of its priority to the organization, together with 

some possible controls. 

1.1.1. Monte Carlo method 
A number of stochastic techniques have been developed to aid in the risk 

management process. These are based on complex mathematical models that use 

stochastically generated random values to compute likelihood and other ratios for our 

analysis model (Corcuera, Imkeller, Kohatsu-Higa, & Nualart, 2004). 
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Monte Carlo methods can aid in other risk methodologies such as Time-based 

analysis (Curtis, et al 2001).  There is a good introduction to Monte Carlo methods 

available at http://www.chem.unl.edu (Woller, 1996). This technique further allows for 

the determination of the range of possible outcomes and delivers a normalized 

distribution of probabilities for likelihood.  Combining stochastic techniques with 

Bayesian probability and complex time series analysis techniques such as Heteroscedastic 

mapping is mathematically complex, but can aid in situations where accuracy is crucial 

(Dellacherie, & Meyer, 1982). 

These methods are truly quantitative.  They help predict any realistic detection, 

response and thus exposure time in a manner that can be differentiated by the type or 

class of attack.  These types of statistical methods are known to have a downside in that 

they are more expensive than the other methods.  The level of knowledge needed to 

conduct a true quantitative type of analysis is not readily available and the level of 

knowledge of the organization needed by the analyst often excludes using an external 

consultant in all but the smallest of risk analysis engagements.  

2. System Survival 
When assessing network reliability, it is necessary to model the various access 

paths and survival times for not only each system, but for each path to the system.  This 

requires the calculation of the following quantitative fields 

• ( )R t   The Reliability function 

• MTBF  Mean Time Between Failures 

• MTTF  Mean Time to Repair/Fix 

• λ   The expected survival rate (Therneau et. Al. 1994) 

Other measures will be introduced later. The expected survival or failure rate λ is 

used throughout this paper and is detailed further in EQ 3.6 and EQ 3.7. Where possible, 

the standard systems reliability engineering terms have been used. In the case of a 

measure such as the MTTF, this represents the time both to discover and recover a 
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compromised system. The true value estimate for the system comes as a measure of the 

applications on the system, this may be estimated for a less economically expensive 

(though less accurate) estimate. In this calculation, the compromise measure, MTBF is 

best thought of as the mean time to the first failure. 

This can be modelled with redundancy in the design.  Here, each system is a 

parallel addition to the model. Where a system is required to pass another, a serial 

measure is added. For instance, if an attacker has to: 

• bypass system A (the firewall) to  

• compromise system B (an authentication server) which allows  

• an attack against a number of DMZ servers (C, D and E) where  

• systems C and D are connected to the database through  

• a secondary firewall (system F) to (Not in figure 2.1) 

• the database server G (as displayed in figure 2.1).  

Input A B

C

E

D

VPN G

G

 

Figure 2.1  Attacking a series of systems  

 The attacker can either attack the system directly through the VPN or by 

following the attack path indicated by the systems.  If the firewall system A restricted 

the attacker to a number of IP addresses, the attacker may do 1 of a number of things 

in attacking this system (in order to gain access as if the attacker was one of these 
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IPs): 

1. Compromise the input host  

2. Spoof an address between the input IP address (such as through a router 

compromise at an ISP or other system) 

3. Compromise the VPN 

Other options, such as spoofing an address without acting as a MITM (Man In 

The Middle) will leave some attacks possible that can not result in a compromise of 

system G. These could have an economic impact that would be calculated separately. 

Such an event that can be calculated would be a DDoS (Distributed Denial of Services) 

attack on the server. 

Hence, the effective attack paths are: 

• Input, A, B, C, F, G 

• Input, A, B,D, F, G 

• Input, A, B, E, C, F, G 

• Input, A, B, E, D, F, G 

• VPN, G 

In this instance, it is necessary to calculate conditional probabilities as these paths 

are not independent. Here the options need to consider first include (the paper will use the 

term I to define an attack on the Input system and S to refer to a spoofed attack of the 

input system): 

• The conditional probability (Annis, 2010) of compromising system A given a 

successful spoof attack on the Input system, 1 1( ) ( ). ( | )P I A P I P A I∪ =  (where 

1A refers to an attack on system A using path No. 1, or Input, A, B, C, F, G) 

• The conditional probability of attacking system A   

• The probability of attacking system G, 5 5( ) ( ). ( | )P V G P V P G V∪ =  
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Each of the attack paths are able to be treated as independent. Hence, the overall 

probability of an attack is a sum of the conditional probabilities from each attack path. As 

a consequence, the attacker will most likely come over the lowest cost path, but the 

probabilistic result allows for an attack from any path. The high and low probability 

attack measures are jointly incorporated in the process.  

Presuming no other paths (such as internal attacks etc) it is feasible to model the 

alternate probability as not possible (or at least feasible). Here 6 0P = =∈ . Additionally, 

the probability of an attack over path 5 (the VPN) can be readily calculated without 

further input as: 

 5 5 5( ) ( ). ( | )P P V G P V P G V= ∩ =  

Here: 

  ( )( ) V Vt t
VP V e t eλ λλ− −= + −  (Blanchard & Fabrycky, 2006) and 

 

( )5

5 5

( )

( | ) ( )

G Gt t
GP G e t e

P G V P G

λ λλ− −= + −

=∏      EQ 2.0 

Here there exists a single system behind the VPN. Where more than one system 

exists, it is necessary to calculate the joint probability as is detailed below. In the 

example, with only a single system: 

 

5 5 5

5 5

( | ) ( ) ( ) 1

( | ) ( )

P G V P G P G
P G V P G

= = ×

∴ →
∏

   EQ 2.1 

Equation 2.1 holds as the probability of the attacker compromising system G 

when the VPN has been compromised approaches 1. This is as the attacker has a single 

target with the VPN and the utility of attacking the VPN and no more is negated as no 

other systems exist and the VPN offers no other utility for the attacker alone.  

The values, Vλ and Gλ are the expected survival time or the mean time to 

compromise for the VPN and database respectively as configured and t is the amount of 

time that has passed from install and represents the current survival time of the system 
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(Jeanblanc, & Valchev, 2005). 

Here: 

 
( ) ( ) ( )

5 5 5

5

( ) ( ). ( | )
( | )

G V G Vt t
G V

P P V G P V P G V
P G V

e teλ λ λ λλ λ− + − +

= ∩ =

=

= − +

   EQ 2.2 

On the other hand, the probability of compromise to system I is based on the 

number of systems and as , ( ) 1In P I→∞ → . Basically, as more systems are allowed to 

connect to system A, the closer the probability of compromise tends towards a value of 

P=1. That is, as the systems available to be compromised increase, the probability of 

compromise approaches certainty. This is generalised as each addition to the system adds 

a positive probability of compromise when added to an existing system (Blanchard & 

Fabrycky, 2006). This occurs as no system can be shown to have a probability of 

compromise P=0. Hence, for each additional component added into the system, the 

chance of compromise approaches P=1 (where it is finally reached at n=∞). 

Where there are only a limited number of systems, the probability can be 

computed as a sum of the systems. Where there are a large number of systems with 

equivalent (or at least similar) properties, these can be calculated through the sum of the 

systems. If in the above example, system E is replaced with a series of systems (each with 

the same configuration), it is possible to calculate the probability of a compromise of one 

of the "E" systems as follows: 

 ( )1( ) ( ) 1 1n
i iP E R E P E== = −∏ −⎡ ⎤⎣ ⎦    EQ 2.3 

Here, P(E) is a multiplicative and not additive function. As such, if system "E" is 

defined as a DNS server with a single BIND service and SSH for management of the 

host, an attacker has two means to compromising the system; 

• Attack SSH  

• Attack BIND 

The probability can be considered as independent in this case if there are no 
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restrictions. In the example, DNS is an open service, that is, P(I)=1. The SSH service may 

or may not be open and could be restricted. If this is the case 0<P(I)<1. In the simple case 

where no restrictions have been imposed on SSH, the probability can be calculated as a 

standard independent probability formula. This is:

 

( )
( )

( ) ( ) ( ) ( ) ( )
( ) ( )

2

2

( )

( )
( ) 1 ( ). ( )

( ) 1

( ) 1

SSH SSH

DNS DNS

SSH DNS SSH DNS SSH DNS DNS SSH

SSH DNS SS

t t
SSh

t t
DNS

t t t t t t
DNS SSH DNS SSh

t
DNS SSH

P SSH e t e

P DNS e t e
P E P SSH P DNS

P E e t e e t e e t e

P E e t e

λ λ

λ λ

λ λ λ λ λ λ λ λ

λ λ λ

λ

λ

λ λ λ λ

λ λ

− −

− −

− + − + − − − −

− + −

= + −

= + −

= −

⎡ ⎤∴ = − + + − + −⎣ ⎦

= − + ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )2( ) 1

H DNS SSH DNS SSH DNS

SSH DNS SSH DNS SSH DNS

t t t
DNS SSh

t t t
DNS SSH DNS SSh

t e t e

P E e t e te

λ λ λ λ λ

λ λ λ λ λ λ

λ λ

λ λ λ λ

+ − + − +

− + − + − +

⎡ ⎤− −⎣ ⎦

⎡ ⎤= − + − −⎣ ⎦

 

          EQ 2.4 

The complication comes where one of the services has been restricted as a further 

control. This is a combination of the probability of compromising the restrictions on the 

service (that is spoofing or otherwise bypassing IP address controls) and the compromise 

of the service itself. This can be represented by: 

 

( )

( ) ( )( )
( ) ( )( ) ( )

1

1

( ) . ( )

( ) . 1 1

1 .

SSH SSH

SSH SSH

SSH SSH SSH SSH

t t
SSh

t t n
SSh i i

t t t tn
SSh i i SSh

P SSH e t e P I

P SSH e t e P I

e t e P I e t e

λ λ

λ λ

λ λ λ λ

λ

λ

λ λ

− −

− −
=

− − − −
=

⎡ ⎤= + −⎣ ⎦

⎡ ⎤∴ = + − −∏ −⎡ ⎤⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤= + − − ∏ − + −⎡ ⎤⎣ ⎦⎣ ⎦ ⎣ ⎦

 

In this case, there exists a probability ( )1( ) 1 1n
i iP I P I== −∏ −⎡ ⎤⎣ ⎦  where the 

allowed source systems (I) are limited to a total of "n" IP addresses (or keys). The 

probability ( )iP I  of any source system being compromised will vary, but may be 

estimated based on the type and location of each system. As more systems are added into 

the equation, the polynomial equation becomes more complex. In the event that similar 

systems are also accessing this, these can be calculated and the equation simplified. 

For example, if two (2) classes of systems exist (Linux and Windows Vista) that 

comprise the set of systems iI for a total of 4 systems (2x Windows and 2x Linux) these 
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can be defined using: 

  

( )

( )

1 2

3 4

( ) ( )
&

( ) ( )

Win Win

Linux Linux

t t
Win

t t
Linux

P I P I e t e

P I P I e t e

λ λ

λ λ

λ

λ

− −

− −

= + −

= + −

;

;  

In the case where 1 2( ) ( ) 0.25P I P I =; and 3 4( ) ( ) 0.2P I P I =; due to the system 

configurations and patch status, it is possible to calculate P(I): 

 

( )( )

[ ]

1

2 2

2 2

( ) 1 1

1 (1 0.25) .(1 0.2)

1 (0.75) .(0.8) 1 0.5625 0.64 1 0.36

0.64

n
i iP I P I== −∏ −⎡ ⎤⎣ ⎦

⎡ ⎤= − − −⎣ ⎦

⎡ ⎤= − = − × = −⎣ ⎦
=   EQ 2.5 

In this case, the probability of a compromise due to SSH would become: 

 

( )

( )

( ) . ( )

0.64

SSH SSH

SSH SSH

t t
SSh

t t
SSh

P SSH e t e P I

e t e

λ λ

λ λ

λ

λ

− −

− −

⎡ ⎤= + −⎣ ⎦

⎡ ⎤= + −⎣ ⎦    EQ 2.6 

With the details from the example at 2.2, it is possible to calculate the survival 

function for system E: 

[ ]
( ) ( ) ( ) ( ) ( )2

( ) 1 0.64 ( ). ( )

( ) 1 0.64 SSH DNS SSH DNS SSH DNSt t t
DNS SSH DNS SSh

P E P SSH P DNS

P E e t e teλ λ λ λ λ λλ λ λ λ− + − + − +

= −

⎡ ⎤∴ = − + − −⎣ ⎦          EQ 2.7 

Thus, there exists a method to calculate the probability of each system as well as 

the conditional probability of that system.  

The addition of a device (such as an IDS) changes or otherwise impacts t and adds 

additional complexity to the calculations. An IDS for instance can limit the value of  t 

through a probabilistic feedback process. The more effective the IDS is, the quicker an 

attack or other incident will be intercepted. In this instance, t becomes a probabilistic 

function based on how effective the IDS itself is. This becomes a combination of the 

following factors: 
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• The inherent accuracy of the IDS (which is a trade-off between TYPE I and 

TYPE II errors (Rogers, 1996) and it is a cost function in itself) 

• The missed detection rate (even where an incident is noted, the analyst may miss 

the detection. As more false negatives are seen, the missed detection rate 

increases (Ikeda, & Watanabe, 1962). As a result, increasing false negatives to 

capture all possible attacks ends in a limit where the IDS is no longer effective). 

A Type I error is often denoted as a “false positive”. This involves incorrectly 

rejecting the null hypothesis in favor of the alternative. Where an IDS is involved, a false 

positive would involve detecting and alerting on an event that did not actually happen to 

be an incident or attack. A Type II error is the opposite of a Type I error. A Type II error 

in an IDS system involves the false acceptance of the null hypothesis and is commonly 

referred to as a false negative. It would imply that the packet or traffic is not an attack 

and is safe when it is in fact malicious or otherwise dangerous. 

The IDS forms a cost function as the increase in reporting results in a greater 

number of false positives that need to be investigated. In limiting the false positives, the 

likelihood of missing an incident of note also increases. Each validation of a false 

positive takes time and requires interaction from an analyst. Hence the tuning of an IDS 

is balanced on maximizing the detection against cost.  

In the event that the IDS does not detect the attack, the function mirrors that of the 

system without the IDS in effectiveness. Note that the cost of the system with the IDS is 

greater than the system without IDS. As a result, the addition of IDS is a limiting 

function. An increase in cost adds to the power of the IDS. This is, more analyst time and 

more detection capability lowers the false negative and false positive rate through an 

increase in cost. Each IDS system has an expected TYPE I and TYPE II error rate that 

will vary as the system is tuned to a particular environment. The result of this is an 

individualistic function for the organisation that can only be generally approximated for 

other organisation (even when the same IDS product is deployed).  

For a given probability of survival, it is possible to calculate the expected survival 

time (t) of the system. This process becomes computationally infeasible in large systems 
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with numerous inputs. For instance, on system E (as defined in EQ 2.3) it is feasible to 

rearrange the equation of the expected probability of system E being compromised. For 

instance, if a calculation of the expected function of survival time for a set survival 

probability P is desired, rearrange the equations in EQ 2.3 as 

follows.

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2

2

2

( ) 1 0.64

0.99, 0.99 1 0.64

SSH DNS SSH DNS SSH DNS

SSH DNS SSH DNS SSH DNS

SSH DNS SSH DNS

t t t
DNS SSH DNS SSh

t t t
DNS SSH DNS SSh

t t
DNS SSH DNS

P E e t e te

if P e t e te

or e t e

λ λ λ λ λ λ

λ λ λ λ λ λ

λ λ λ λ

λ λ λ λ

λ λ λ λ

λ λ λ λ

− + − + − +

− + − + − +

− + − +

⎡ ⎤= − + − −⎣ ⎦

⎡ ⎤∴ = = − + − −⎣ ⎦

+ − −( ) ( )

( ) ( ) ( ) ( ) ( )2

0.0015625

ln( ) 6.4615

SSH DNS

SSH DNS SSH DNS SSH DNS

t
SSh

t t t
DNS SSH DNS SSh

te

e t e te

λ λ

λ λ λ λ λ λλ λ λ λ

− +

− + − + − +

=

+ − − = −

         EQ 2.8 

This result is in the form of: 

 ln( )At B t C+ =  

From EQ 2.8 it is clearly seen that as t→∞ [ ]ln( ) tt t t→∞+ ⎯⎯⎯→ . From these 

equations, as long as t is large, an approximation can be deployed to obtain a lower limit 

estimate of ln( )At B t C+ = as At C; . As such an approximate for the lower limit of 

time for system E's survival is defined as: 

 

( )
( )

6.4615 ln
2

DNS SSH

SSH DNS

t
λ λ

λ λ

+ +
=

+     EQ 2.9 

In EQ 2.4, it is demonstrated that the lower the value of t, the greater the error. 

Measuring "t" in seconds and substituting normal system values of λ  allows for the use 

of Monte Carlo simulations to approximate the expected value of t. 

For simplicity, let R represent reliability and Q the unreliability (hence, 

1 R Q− = ).  

For each application, a possibility exists to use Bayes' theorem to model the 

number of vulnerabilities and the associated risk. A mathematical introduction to Bayes' 

Theorem is available online from Weisstein and in more detail from Joyce (2008). For 

open ports, the person evaluating risk can use the expected reliability of the software 
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together with the expected risk of each individual vulnerability to model the expected risk 

of the application. For instance, it is conceivable to model ( )P SSH using this method.  

 
( ) ( )

( )
|

P A B
P A B

P B
∩

=
     EQ 2.10 

alternatively; 

 ( ) ( ) ( ) ( ) ( )| |P A B P B P A B P A P B A∩ = =  

Over time, as vulnerabilities are uncovered and fixed (assuming that new 

vulnerabilities have not been introduced), fewer issues will remain. Hence, the 

confidence in the software product increases. This also means that mathematical 

observations can be used to produce better estimates of the number of software 

vulnerabilities as more are uncovered.  

It is thus possible to observe the time that elapses (Guo, Jarrow, & Zeng, 2005) 

since the last discovery of a vulnerability. This value is dependent upon the number of 

vulnerabilities in the system and the number of users of the software. The more 

vulnerabilities, the faster the discovery rate of bugs. Likewise, the more users of the 

software, the faster the existing vulnerabilities are found (through both formal and 

adverse discovery).   

2.1. Mapping Vulnerabilities within software 
Now let E stand for the event where a vulnerability is discovered within the Times 

T and T+h for n vulnerabilities in the software  

 
( | )

T h
n t n T

T

P E n n e dt n e hα αα α
+

− −= ≈∫
 

Where a vulnerability is discovered between time T and T+h use Bayes’ Theorem 

to compute the probability that n bugs exist in the software: 
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( )

ln
( )

0

!( | )

!

n
n T

vu erabilities n
n T

n

ne
nP n E

ne
n

α β

α β

β

β

− +

∞ − +

=

=
⎡ ⎤
⎢ ⎥
⎣ ⎦

∑
  EQ 2.11 

From this it can be seen that: 

 

( )
( )

( )
( )

1

ln 1

0

1 !
( | )

1 !

nT

vu erabilities nT

n

e
n

P n E
e
n

α

α

β

β

−−

−−
∞

=

−
=

⎡ ⎤
⎢ ⎥
⎢ − ⎥
⎣ ⎦

∑
  EQ 2.12 

EQ 2.12 will apply for all versions of software (Wright & Zia, 2011). As patches 

and updates are applied to the software, existing vulnerabilities will be rectified and 

removed, but new flaws related to how many new lines of code have been added in the 

patching process will be introduced and will also need to be calculated. 

By summing the denominator it can understood that in observing a vulnerability 

at time T after the release and the decay constant for defect discovery is α , then the 

conditional distribution for the number of defects remaining is a Poisson distribution with 

expected number of defects
Te αβ −

. 

Hence: 

 
( )

( )
!

T

T

nT
e

e

e
P n e

n
α

α

α
β

β

β−

−

−

=
    EQ 2.13 

This can be extended to create a method to calculate the expected failure of a 

system based on the interaction of multiple software products. 

3. Exponential Failure  
The reliability function (also called the survival function) represents the 

probability that a system will survive a specified time t. Reliability is expressed as either 

MTBF (Mean time between failures) or MTTF (Mean time to failure). The choice of 
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terms is related to the system being analysed. In the case of system security, it relates to 

the time that the system can be expected to survive when exposed to attack. This function 

is hence defined as:  

 ( ) 1 ( )R t F t= −        EQ 3.1 

The function F(t) in EQ 3.1 is the probability that the system will fail within the 

time 't'. As such, this function is the failure distribution function (also called the 

unreliability function). The randomly distributed expected life of the system 't' can be 

represented by a density function, ( )f t and thus the reliability function R(t) can be 

expressed as: 

 
( ) 1 ( ) ( )

t

R t F t f t dt
∞

= − = ∫
     EQ 3.2 

The time to failure of a system under attack can be expressed as an exponential 

density function: 

 
( )

tef t
θ

θ

−

=
       EQ 3.3 

where θ is the mean survival time of the system when in the hostile environment 

and t is the time of interest (the time that the user wishes to evaluate the survival of the 

system over). Together, the reliability function, R(t) can be expressed as: 

 
( )

t
t

t

eR t dt e
θ

θ

θ

∞ −
−= =∫

      EQ 3.4 

The mean (θ ) or expected life of the system under hostile conditions can hence 

be expressed as: 

 
( ) t M t

t

R t e dt e λ
∞

− −= =∫
      EQ 3.5 

Where M is the MTBF of the system or component under test and λ is the 

instantaneous failure rate (Brémaud, 1981) where Mean life and failure rate are related by 
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the formula: 

 
1

λ
θ

=
        EQ 3.6 

The failure rate for a specific time interval can also be expressed as: 

 

#Failures
Operating Hours

λ =
∑      EQ 3.7 

Failure rates are generally expressed in terms of failures per hour, percentage of 

failures per each 1,000 hours or the rate of failures per million hours. For instance, if a 

system has a 90 day patch cycle (the total mission time) and that the total number of 

software failures in that time is expected to be (or is later measured to be) 6 

vulnerabilities, it is conceivable to calculate the failure rate per hour as: 

 

6 6 0.002778
90 24 2,160

λ = = =
×     EQ 3.8 

In the case of an exponential distribution for the system mean survival under 

attack, the MTBF can be defined as: 

 
1 1 360

0.002778
MTBF hours

λ
= = =

    EQ 3.9 

Hence, it is expected the system to survive 15 days before a vulnerability is 

discovered. This does not return when a system will actually be exploited, simply the 

expected probabilistic time that can be used to project and plan future expenditure. 

4. Modeling System Audit as a Sequential test with 
Discovery as a Failure Time Endpoint 

Combining hazard models (http://www.statsoft.com ) with SIR (Susceptible-

Infected-Removed) epidemic modeling (Altmann, 1995) provides a means of calculating 

the optimal information systems audit strategy. Treating audit as a sequential test allows 

for the introduction of censoring techniques (Chakrabarty, & Guo, 2007) that enable the 

estimation of benefits from divergent audit strategies (Benveniste, & Jacod, 1973). This 
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process can be used to gauge the economic benefits of these strategies in the selection of 

an optimal audit process designed to maximize the detection of compromised or malware 

infected hosts. 

Computer systems are modeled through periodic audit and monitoring activities. 

This complicates the standard failure and hazard models that are commonly deployed 

(Newman, et. al. 2001). A system that is found to have been compromised by an attacker, 

infected by malware or simply suffering a critical but unexploited vulnerability generally 

leads to early intervention. This intervention ranges from system patching or 

reconfiguration to complete rebuilds and decommissioning.  

Audits and reviews of computer systems usually follow a prescribed schedule in 

chronological time. This may be quarterly, annually or to any other set timeframe. 

Further, periodic reviews and analysis of systems in the form of operational maintenance 

activities also provide for a potential intervention and discovery of a potential system 

failure or existing compromise. 

Using a combination of industry and organizational recurrence rates that are 

stipulated from a preceding failure and covariate history as derived from the individual 

organization introduces a rational foundation in modeling current event data. An incident 

as defined for the purposes of this paper is an event leading to the failure of the system. 

This can include a system compromise from an attacker or an infection process of 

malware (such as a scanning worm). By denoting the number of incidents within the 

organization as ( )N t%  by follow-up time t and ( )N t as the corresponding observed 

incidents in (0, ]t  with regards to absolute continuous event times, the hazard or intensity 

process ( )tλ  for the intervention time t using the covariate data ( )X t can be expressed 

as: 

 ( ) ( ) ( ) ( )1 ,0 ,t P dN t N u u t X tλ ⎡ ⎤ ⎡ ⎤= = ≤ <⎣ ⎦ ⎣ ⎦
% %

  EQ 4.1 

Taking the assumption that the administrative and audit staff are not the direct 

cause of an incident, a point process ( )1 2 3, , ,...T T T will usually be observed for the system 
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being examined. A system is defined by an isolated and interactive grouping of 

computers and processes. This could be a collection of client and server hosts located at a 

specific location isolated by a common firewall.  

Due to censoring through the audit process, ( )N t can be greater than ( )N t% . 

Equation (4.1) has an assumption that only a single incident has occurred, that is, 

N%increments by units. Live systems can and do experience multiple incidents and 

compromises between detection events. Hence it is also necessary to model the mean 

increments in N%over time 

 ( ) ( ) ( ) ( )| ,0 ,d t E N t N u u t X t⎡ ⎤Λ = ≤ <⎣ ⎦
% %

   EQ 4.2 

with the cumulative intensity process Λ . 

In the case of a continuous-time process with unit jumps, expressions (1) and (2) 

can be expressed as 

 
( ) ( )

0

t
t u duλΛ = ∫ .      EQ 4.3 

Independent censorship requires that C t≥  [15].  This assumption of independent 

censorship allows the preceding covariate histories to be incorporated into the model. In 

defining ( ) ( )1 0Y t t C= < ≤ , it is now necessary that 

 ( ) ( ) ( ) ( ) ( ) ( )| , ;0 ,E dN t N u Y u u t X t Y t t≤ < = Λ⎡ ⎤⎣ ⎦   EQ 4.4 

for all times ( t C≤ ) prior to the audit or review. 

4.1. NHPP, Non-homogeneous Poisson Process 
Poison processes have been used to model software (Zhu et. al 2002) and systems 

failures (Marti, 2008), but these models are too simplistic and it is necessary to vary the 

intensity (rate) based on historical and other data in order to create accurate risk models 

for computer systems. The non-homogeneous Poisson process (NHPP) can be used to 

model a Poisson process with a variable intensity. In the special case when ( )tλ takes a 

@ 2021 SANS Institute Author Retains Full Rights



© 2
012
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A preamble into aligning Systems engineering and Information security risk 19	  
	  
	  

Author	  Name,	  email@address	   	   	  

constant valueλ , the NHPP is reduced to a homogeneous Poisson process with 

intensity ( )tλ λ= . 

In the heterogeneous case, an NHPP with intensity ( )tλ , the increment, 

,0t uN N u t− ≤ <has a Poisson distribution with an intensity of
( ) ( )

t

u
t x dxλ λ= ∫ . Hence 

the distribution function of the incident discovery can be expressed as: 

 

( )

( )( )
( )( )0

1 0

1 exp

1 exp

u u t t

u t

u

t

P N N

x dx

u v dv

λ

λ

+

+

Λ = − − =

= − −

= − − +

∫

∫  

The NHPP format is better suited to information systems risk modeling than is the 

homogeneous Poisson Process as it can incorporate changes that occur over time across 

the industry. 

This can also be modeled as the Poisson process with parameterλ . Here 
( )( ), 0tN tλ ≥

 represents the unique (in law) increasing right continuous process with 

independent time homogeneous increments. Each 
( )0, tt N λ> has a Poisson distribution 

with rate tλ . The process 
( )( ), 0tX tλ ≥

is also stationary with independent time 

increments. 

With 0 0t = and ( )1,...,
n

nt t +∈ ° , 1 2 ... nt t t< < < the r.v.'s 

( )( ) ( ) ( )( ) ( ) ( )( )1 2 1 1
, ,...,

n nt t t t tX X X X Xλ λ λ λ λ

−

⎡ ⎤− −
⎣ ⎦ are independent and for 

each
( ) ( )( )11,..., ,
n nt tk n X Xλ λ

−
= −

has the same distribution as 
( )( )1k kt tX λ

−− .  

The characteristic function of 
( )( )1

1
k kt tX λ

λ −−

can be computed for any mλ ∈ ° as: 
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( )( ) ( ) ( ) ( )

( ) ( )

1
2

1 11

1 1

1

0

1

!

mm
m k k k kt tk k

i m

k k m k k

n i ni ni t t t tX
k k

n

t t e i t t

t t
E e e e

n

e

λ

λ
λ

λλ
λ λ λ

λλ

λ λ λ

λ− −− −

− −

⎛ ⎞⎛ ⎞ ∞− − − − ⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠

=

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟− − − − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞⎡ ⎤ −
⎜ ⎟=⎢ ⎥ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

=

∑

 

as λ →∞ the expression converges to
( )

2

12
m

k kExp t tλ
−

⎛ ⎞−
−⎜ ⎟

⎝ ⎠ , which is the characteristic 

function of a Gaussian variable with variance ( )2
1k kt tσ −= − . 

4.2. Recurrent Events 
In many cases, audit and review processes are limited in scope and may not form 

a complete report of the historical processes that have occurred on a system (Revuz, & 

Yor, 1999). The audit samples selected systems and does not check neighboring systems 

unless a failure is discovered early in the testing. In these instances, the primary interest 

resides in selected marginalized intensities that condition only on selected parts of the 

preceding histories. Some marginal intensity rates drop the preceding incident history all 

together 

 ( ) ( ) ( )|md t E dN t X t⎡ ⎤Λ = ⎣ ⎦
%

     EQ 4.5 

A common condition for the identification of mΛ is that 

 
( ) ( ) ( ){ } ( ) ( )| ;0 , mE dN t Y u u t X t T t d t≤ < = Λ⎡ ⎤⎣ ⎦ .  EQ 4.6 

For (EQ 4.6) to be valid, censoring intensity cannot depend on the preceding 

incident history for the system ( );0N u u t≤ <⎡ ⎤⎣ ⎦ . The process of randomly selecting 

systems to audit makes it unlikely that particularly problematic systems will be re-audited 

on all occasions. This would include the exclusion of targeting client systems that have 

been compromised several times in the past or which have suffered more than one 

incident in recent history. The result is that covariates that are functions of 

( );0N u u t⎡ ⎤≤ <⎣ ⎦
%

will also have to be excluded from the conditioning event. Here 
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 ( ) ( ) ( ) ( )| | ,E dN u X u E dN u X t⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦
% %

 .t u∀ ≥  EQ 4.7 

When this occurs 

 

( ) ( ) ( ) ( )

( ) ( )
( )

0

0

| |

|

t

t

m

E dN u X u E dN u X t

E dN u X u

t

⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦

⎡ ⎤= ⎣ ⎦

= Λ

∫

∫

% %

%

    

( )m tΛ models the expected number of incidents that have occurred in the system 

over ( ]0, t as a function of ( )X t . 

4.3. Cox Intensity Models 
Using a Cox-type model 

 ( ) ( ) ( ) '
0

Z td t d t e β⎡ ⎤⎣ ⎦Λ = Λ ,     EQ 4.8 

with ( ) ( ) ( )1' ,..., pZ t Z t Z t⎡ ⎤= ⎣ ⎦ having been created using functions of ( )X t and 

( );0N u u t≤ <⎡ ⎤⎣ ⎦ , inference differs little to univariate failure time data. The log-partial 

likelihood function, score statistic and the integral notation for the information matrix 

may be written respectively as 

 
( ) ( ) ( ) ( ) ( ){ } ( )0

0
1

log ' log ,
n

i i
i

L Z t S t dN tβ β β β
∞

=

⎡ ⎤⎡ ⎤= = − ⎣ ⎦⎢ ⎥⎣ ⎦∑ ∫l
 EQ 4.9 

 
( ) ( ) ( ) ( ){ } ( )

0
1

,
n

i i
i

U Z t t dN t
β

β ξ β
β

∞

=

∂ ⎡ ⎤= = −⎢ ⎥⎣ ⎦∂ ∑ ∫
l

  EQ 4.10 

and 

 
( ) ( ) ( ){ } ( )

2

0
1

,
'

n

i
i

I V t dN t
β

β β
β β

∞

=

−∂ ⎡ ⎤= = ⎢ ⎥⎣ ⎦∂ ∂ ∑ ∫
l

   EQ 4.11 

where,   
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S t Y t Z t e

S t
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⊗
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=

=

∑

 

and 

 
( ) ( )

( )
( )

2
2

0

,
, , .

,
S t

V t t
S t

β
β ξ β

β
⊗

= −
 

By defining ( )Z t in terms of fixed or external time varying covariates, (8) can be 

further defined by adding additional elements ( ) ( )1 21 1 1 2 ...N t N tγ γ− −⎡ ⎤ ⎡ ⎤= + = +⎣ ⎦ ⎣ ⎦  

to ( ) 'Z t β . This would allow the intensity to be altered by a multiplicative factor 
jeγ following the jth incident on an individual system when compared against another 

system without any incidents at the same point in time. 

4.4. SIR (Susceptible-Infected-Removed) epidemic 
modeling of incidents during Audit 

Allowing that a compromised or infected system remains infected for a random 

amount of timeτ , the discovery of an incident by an auditor will be dependent on a 

combination of the extent of the sample tested during the audit and the rate at which the 

incident impacts individual hosts. Here, it is assumed that the audit is effective and will 

uncover an incident if an infected host is reviewed. When a host in a system is infected, 

any neighboring hosts are attacked and infected at a rate r. The sample size selected in 

the audit is set as κ and the total number of hosts in the system being audited is defined 

byΚ  wereκ ≤ Κ . The time between audits (the censor time) is defined by C. 

If C τ≤ , an infected or compromised system will be undiscovered and attacking 

other hosts within the system when the audit occurs. At the end of the timeτ , the system 

is removed as it is either 'dead' - that is decommissioned and reinstalled or it has been 

patched against the security vulnerability. 

A NSW (Newman, Strogatz, and Watts, 2001) random graph is obtained by 
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investigating the neighboring systems in the SIR model. From this, the thresholds can be 

computed. 

4.4.1. Calculations with a constantτ . 
First, consider the case where τ is a constant value, and without loss of generality 

scale time to make a constant. Start with letting kp be the degree of distribution.  

Starting with a single infected host in a system, it leads to the ability to compute 

the probability that j of k neighboring hosts will be infected is given by: 

 
( ) ( )ˆ 1

j k j rr
j k

k j

k
p p e e

j

∞
− −−

=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑

    EQ 4.12 

Setting µ is the mean of p then the mean of p̂ is ( )ˆ 1 reµ µ −= −
 

With the network constructed as an NSW random graph, systems that are 

compromised in the first and subsequent iterations will each have k neighbors. The value 

k includes subsequently compromised machines and the host that compromised the 

existing system. The probability of a compromise associated with these neighboring hosts 

is given by: 

 

( ) 11
0k

k

k p
q k

µ
++

= ∀ ≥
     EQ 4.13 

This allows us to calculate the probability that j neighboring hosts also become 

infected: 

 
( ) ( )ˆ 1

j k j rr
j k

k j

k
q q e e

j

∞
− −−

=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑

.    EQ 4.14 

Setting ν to represent the mean of q, leads to the mean of q̂ , 

 ( )ˆ 1 reν ν −= − . 

From this it is not too difficult to see that for the attack or malware to propagate 

and infect other systems, it is necessary have the condition where; 
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 ( )1 reν −− .       EQ 4.15 

Using this condition provides the capability to calculate the probability that a particular 

attack or type of malware could result in an outbreak (Thomson, 2007). Setting 

1 rT e−= − (Newman, Strogatz, and Watts, 2001) returns: 

 

( ) ( )

( ) ( )

( )( )

0
0 0

0 0

0

ˆ 1

1

1 .

k jj j
k

k j

j k j
k

k j

k
G z p T T z

j
k

p Tz T
j

G Tz T

∞ ∞
−

= =

∞ ∞
−

= =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

= + −

∑∑

∑ ∑

   EQ 4.16 

Similarly, it is simple to prove that ( ) ( )( )1 1
ˆ 1G z G Tz T= + −. 

As such, the probability that an incident behaves as an epidemic is ( )0
ˆ1 G ξ−  

where ( )1Ĝ ξ ξ= is the smallest fixed point in [ ]0,1 . This is important for where incident 

can be demonstrated to behave in a manner that lies between [0,1] it is possible to utilize 

the joint probability substitutions from section 2. 

4.4.2. Calculations with a variableτ . 
Next it is necessary to consider the effects of a variable or random value ofτ . 

This is the probability that a compromised system causes a compromise in its 

neighboring system: 

 
( )

0
1 rtT dtP t eτ

∞ −= − =∫ .     EQ 4.17 

Again, T is the transmissibility factor. 

Newman (Newman, Strogatz, and Watts, 2001) asserted that the infection of 

neighbors was independent. This does not hold as valid for malware as neighboring 

systems are commonly linked to form workgroups and domains that share files and even 

execute code across network boundaries, but it gives a good approximation where most 

systems are not openly connected as a grid. Interactions in systems and the ability of 

software to rescan the same systems carry a degree of dependence. Here the time to 

@ 2021 SANS Institute Author Retains Full Rights



© 2
012
 SA
NS
 Ins
titu
te, 
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A preamble into aligning Systems engineering and Information security risk 25	  
	  
	  

Author	  Name,	  email@address	   	   	  

compromise may be modeled exponentially with meanλ  (again the failure rate), such 

that ( ) tP t e λτ −= = . 

From this it can be shown that the probability of a host not being compromised is, 

 

( )

( )

0 0
1

1

r tt rtT e e dt e dt

r

λλ

λ

∞ ∞ − +− −− = =

=
+

∫ ∫

.    EQ 4.18 

Likewise, the probability that n hosts in a system are not compromised is, 

 

( )

( )

0 0
1

1

nr tt nrtT e e dt e dt

nr

λλ

λ

∞ ∞ − +− −− = =

=
+

∫ ∫

    EQ 4.19 

For cases where τ is not constant, Jensen’s inequality (Dempster,  Laird, and 

Rubin, 1977) implies that for neighboring hosts, the probability of escaping compromise 

is positively correlated as  

 ( ) ( )nnrt rtE e Ee− −>
.       EQ 4.20 

It is now viable to compute the expected number of systems that will be 

compromised by substituting kr for kp and kq which gives us, 

 
( ) ( ) ( ) ( )

0
0 0

ˆ 1 1
jj rt r k j t

k
j j

k
G z P dt z r e e

j
τ

∞ ∞∞ − − −

= =

⎛ ⎞
= = − ⎜ ⎟

⎝ ⎠
∑ ∑∫

 EQ 4.21 

if 0 1 1r r+ > , G is strictly convex as ˆ Tν ν= , ( )( )1 1i iG G z T= + −%
.  

4.5. Applications to audit and review 
The first case whereC τ>  has a host in the system being discovered as having 

been infected or compromised before the audit. Here, the rate of infection r determines 

the chance of other systems being uncovered during an audit. If the time between audits 

exceeds the time to compromise the first host is insufficient for the incident to spread (i.e.  
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,C C rτ ≤ < ), then only the initial host will have been compromised and this will be 

known prior to the audit. 

If C τ≤ a compromised host in the system will be undiscovered and attacking 

other hosts within the system when the audit occurs. At the end of the timeτ , the system 

is found. As such, if ( )C c τ+ ≤  (where c is the average time taken to conduct an audit), a 

compromised host is discovered during the audit through a process independent of the 

audit. 

The alternative scenario and that which is of most interest is where ( )C c τ+ < . In 

this case, the incident will not be discovered independent of the audit. In this instance, the 

calculation of the probability that an auditor will discover a compromised system during 

the audit process may be determined as there exists a time limited network function 

which is coupled with a discovery process that is formulated using the Bayesian prior. 

That is a risk professional can calculate the probability that all systems are not 

compromised given a selected audit strategy that finds that none of the audited hosts have 

been compromised.  

So, though it is never feasible to absolutely know if systems that are outside the 

audit have been compromised, there is a level of relative risk that can be calculated 

within confidence bounds and used as a means of calculating the expected loss for a 

variety of risk mitigation strategies. The security professional can then use hypothesis 

tests to determine if one strategy is significantly better than another and select risk 

strategies based on expected loss. 

4.6. False Negatives in an Audit 
False negatives result (Jacod, 1975) in an audit where an incorrectly reported 

result is supplied noting the organization as safe when it is not (i.e. no compromise was 

detected where hosts have been compromised). By letting A represent the condition 

where the organization has been compromised and let B represent the positive evidence 

of a compromise being reported: 
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( ) ( ) ( )

( ) ( ) ( ) ( )
|

|
| |
P B A P A

P A B
P B A P A P B A P A

=
+    EQ 4.22 

Here it is practicable to model the actual rate of compromise in the system, ( )P A . 

Given a network compromise model (EQ 4.21) it is realistic to substitute the censored 

time: 

 
( ) ( ) ( ) ( )

0
0 0

ˆ 1
C jj rt r k j t

k
j j

k
G z P C dt z r e e

j
τ

∞ ∞
− − −

= =

⎛ ⎞
= ≤ −⎜ ⎟

⎝ ⎠
∑ ∑∫

 EQ 4.23 

From this the results show that the probability of a host not being compromised in 

the censor time is, 

 

( ) ( )

( )

( )
( )

( )

( )

( ) ( )

0 0

0

1

1

1

C C r tt rt

Cr t r C

r C

P A T e e dt e dt

e e
r r r

e
r

λλ

λ λ

λ

λ λ λ

λ

− +− −

− + − +

− +

= − = =

= = +
− + − + +

−
=

+

∫ ∫

.EQ 4.24 

Equation (EQ 4.24) also derives the probability of any single host being 

compromised between the audits 

 
( )

( )

( )
11

r CeP A
r

λ

λ

− +−
= −

+ .     EQ 4.25 

Depending on whether τ is constant or varies; the process can calculate the 

expected number of hosts that will be compromised in the period between audits as a 

fixed or variable function. In either event, each calculation is an exercise in Bayesian 

estimation of the type where a random sample is selected and the defects or failures are 

analyzed 

 
( ) x n xn
f x p q

x
−⎛ ⎞

= ⎜ ⎟
⎝ ⎠ .      EQ 4.26 

This binomial distribution is simplified in the case of a false negative (no failures 
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or x=0 from a sample of n hosts) 

 
( )

0
x n x x n xn

f x p q p q− −⎛ ⎞
= =⎜ ⎟
⎝ ⎠ .      EQ 4.27 

Based on the types of systems, the audit periods can be selected to create an 

economically optimal choice. A baseline audit frequency is frequently set by regulatory 

guidelines. Here, the baseline requirement would be to have a minimum audit process 

designed around the most effective returns within the regulatory regime.  In this, using an 

equation that calculates the expected number of compromised or infected hosts within a 

censor time allows for the selection of  either a fixed audit schedule, C = Constant, or 

vary C over the course of the system life in order to maximize the detection, C=C(t).   

In conducting this exercise, the cost of the audit, and differences that occur would 

also need to be modeled. The required effort for an audit of 10 hosts in a 1 month period 

is not necessarily linearly related to the audit of 60 hosts in a 6 month period. In each 

case, the individual constraints faced by the selected organization also need to be 

incorporated. 

5. Automating the process 
The main advantage to a systems engineering approach is the ease with which it 

can be automated. The various inputs and formula noted throughout this paper can 

become inputs into a neural network algorithm (Fig. 5.1). Equation (2.1) could be 

modeled in three layers (Fig 5.2). 

Here, an input layer with one neuron for each Input (system or application) could 

be used to map for IP Options, Malware and Buffer overflow conditions, selected attacks 

etc. The system of perceptrons would be processed using a hidden neuron layer in which 

each neuron represents combinations of inputs and calculates a response based on current 

data coupled with expected future data, a prior data and external systems data. Data 

processed at this level would feed into an output layer. The result of the neural network 

would supply the output as an economic risk function. 

In this way, a risk function can be created that not only calculates data based on 
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existing and known variables (He, Wang, & Yan, 1992), but also updates automatically 

using external sources and trends. Many external sources (http://www.dshield.org) have 

become available in recent years that provide external trending and correlation points. 

Unfortunately, most of these services have clipped data as the determination of an attack 

is generally unclear and takes time to diagnose where much otherwise useful data is lost. 

When monitoring the operation of a system or the actions of uses, thresholds are 

characteristically defined above or below which alerting, alarms, and exceptions are not 

reported.  This range of activity is regarded as baseline or routine activity. 

 

Fig 5.1  A depiction of a Multi-Layer layer topology neural network 

Multi-Layer layer topology neural networks can be used to accept data from risk 

models and automatically update the risk profile of an organization. In modeling risk, 

each application and system can be modeled using a perceptron.  
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Fig 5.2  Inputs being fed into a perceptron. 

The perceptron is the computational workhorse in this system. In this it is 

reasonable to model the selected risk factors for the system and calculate a base risk that 

is trained and updated over time. The data from multiple organizations can be fed into a 

central system (Kay, 1977) that can be distributed to all users. This could be integrated 

and sold as a product enhancement by existing vendors or independent third parties could 

maintain external datasets. 

     EQ 5.1 

EQ 5.1 defines the input variables as, 

• x1 … xn  are the inputs of the neuron, 

• wi,j,0 … wi,j,n   are the weights, 

• f  is a non-linear activation function, 

• hyperbolic tangent (tanh), 

• vi,j  is the output of the neuron. 

A large vendor such as Microsoft could create an implementation model. In place 

of offering stale recommended security settings (such as currently occurs with 

Microsoft’s MBSA), the risk application could automatically collect data from user 

systems on patch levels and group policy configurations and utilize these in order to 

calculate and report on an estimated level of risk and an expected survival time for the 

system in a number of different scenarios. For instance a notebook computer could have a 

set of risks. This would include the risk when connected to the corporate network, when 

connected to a wireless hotspot etc.  

The training of the network would require the determination of the correct 

weights for each neuron. This is possible in selected systems, but a far larger effort would 

be required to enable this process for more generalized deployment. The data needed for 

such an effort already exists in projects such as DShield, the Honeynet Project and in 
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many similar endeavors. The question is whether there truly exists a will as a community 

to move from an art to a science. 

6. Conclusion 
The equations presented in this paper allow organizations to compare the 

deployed risk strategies against both their own historical data and that of third parties. In 

this manner, strategy can be formulated in order to optimize audits and system reviews in 

a manner that detects an incident in the most economical manner. Projects are all risk 

derived exercises and if our profession can better manage and calculate risk, society will 

benefit. 

Modeling the failure rate of systems and the propagation rate of an attack, allows 

us to calculate an expected number of hosts that are anticipated to have been 

compromised in the time between an audit given a specified survival function or threat. 

Past data and comparisons from similar systems (such as survival data from 

http://www.dshield.org/reports.html) allow for the modeling of alternative systems where 

a reported number of events have been reported against those deployed. 

Dependence, variation, randomness, and frailty add to the risk toolset of 

multivariate failure event analysis. Using frailty theory to model information system risk 

allows us to better predict risk and to more effectively allocate scarce resources through 

selecting the most economically viable targets to defend as well as choosing the optimal 

detection strategies. The properties of censoring-handling and frailty modeling have 

turned multivariate survival analysis into an exceptional tool for the determination of 

system risk. 

For decades, information security practitioners have engaged in qualitatively 

derived risk practices due to the lack of a scientifically valid quantitative risk model. This 

has led to both a misallocation of valuable resources with alternative uses and a 

corresponding decrease in the levels of protection for many systems. Using a 

combination of modern scientific approaches and the advanced data mining techniques 

that are now available provides the technologies and data to create a new approach to 

information systems risk and security. 
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The optimal distribution of economic resources across information system risk 

allocations can only lead to a combination of more secure systems for a lower overall 

cost. The reality is that, like all safety as an issue, information security is based on a set 

of competing trade-offs between economic constraints. The goals of any economically 

based quantitative process are to minimize cost and risk through the appropriate 

allocation of capital expenditure. To do this, the correct assignment of economic and 

legal liability to the parties best able to manage the risk (this is the lowest cost insurer) is 

essential and needs to be assessed. This will allow insurance firms to develop expert 

systems that can calculate risk management figures that can be associated with 

information risk. This will allow for the correct attribution of information security 

insurance products that can be provided businesses generally.  

Externality or the quantitative and qualitative effects on parties that are affected 

by, but who are not directly involved in a transaction is likewise seldom quantified, but is 

an integral component of any risk strategy. The costs (negative) or benefits (positive) that 

apply to third parties are an oft overlooked feature of economics and risk calculations. 

For instance, network externality (a positive effect that can be related to Metcalfe’s law; 

value of a network = 2 times the network’s number of users) attributes positive costs to 

most organizations with little associated costs to themselves. In these calculations, the 

time-to-market and first-mover advantages are critical components of the overall 

economic function with security playing both positive and negative roles at all stages of 

the process. 

The processes that can enable the creation and release of actuarially sound threat 

risk models that incorporate heterogeneous tendencies in variance across 

multidimensional determinants while maintaining parsimony already exist in rudimentary 

form. Extending these though a combination of Heteroscedastic predictors 

(GARCH/ARIMA etc) coupled with non-parametric survival models will make these 

tools more robust. Effort needs to be expended in the creation of models where the 

underlying hazard rate (rather than survival time) is a function of the independent 

variables (covariates). Cox's Proportional Hazard Model with Time-Dependent 

Covariates would be a starting point, with a number of non-parametric methods available 
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where cost allows. 

As we move further into the 21st century, it is time we as a profession started to 

model risk as a scientific process and move away from the art based cottage industry that 

exists right now. This paper has presented a number of methods that can be used to gauge 

the expected failure events in a system of computer hosts. 
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