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Abstract. Using a quantitative study of in-house coding practices, we 

demonstrate the notion that programming needs to move from "Lines of Code 

per day" as a productivity measure to a measure that takes debugging and 

documentation into account. This could be something such as "Lines of clean, 

simple, correct, well-documented code per day", but with bugs propagating into 

the 6th iteration of patches, a new paradigm needs to be developed. Finding 

flaws in software, whether these have a security related cost or not, is an 

essential component of software development. When these bugs result in 

security vulnerabilities, the importance of testing becomes even more critical.  

Many studies have been conducted using the practices of large software 

vendors as a basis, but few studies have looked at in-house development 

practices. This paper uses an empirical study of in-house software coding 

practices in Australian companies to both demonstrate that there is an economic 

limit to how far testing should proceed as well as noting the deficiencies in the 

existing approaches. 

Keywords: Software Development Life Cycle, Model Checking, Software 

Verification, Empirical studies 

1  Introduction 

The deficiency of published quantitative data on software development and systems 

design has been a major ground for software engineering‟s failure to ascertain a 

proper scientific foundation. Past studies into coding practice have focused on 

software vendors. These developers have many distinctions from in-house projects 

that are not incorporated into the practices and do not align well with in-house 

corporate code development.  In the past, building software was the only option but as 

the industry developed, the build vs. buy argument has swung back towards in-house 

development with the uptake of Internet connected systems. In general, this has been 

targeted towards specialized web databases and online systems with office systems 

and mainstream commercial applications becoming a „buy‟ decision.  

As companies move more and more to using the web and as „cloud applications‟ 

become accepted, in-house development is becoming more common.  This paper uses 

an empirical study of in-house software coding practices in Australian companies to 



both demonstrate that there is an economic limit to how far testing should proceed as 

well as noting the deficiencies in the existing approaches. 

1.1  Related Work 

Other studies of coding processes and reliability have been conducted over the last 

few decades. The majority of these have been based either on studies of large systems 

[3, 8] and mainframe based operations [8] or have analyzed software vendors [7]. In 

the few cases where coding practices within individual organization have been 

quantitatively analyzed, the organizations have been nearly always large 

telecommunications firms [1, 2, 5, 6, 8] or have focused on SCADA and other critical 

system providers [9] or are non-quantitative approaches [12, 13]. 

Whilst these results are extremely valuable, they fail to reflect the state of affairs 

within the vast majority of organizations. With far more small to medium businesses 

coupled with comparatively few large organizations with highly focused and 

dedicated large scale development teams (as can be found in any software vendor), an 

analysis of in-house practice is critical to both security and the economics of in-house 

coding. 

As the Internet comes to become all persuasive, internal coding functions are only 

likely to become more prevalent and hence more crucial to the security of the 

organization.   

1.2  Our contribution 

In section 2 we present an analysis of the empirical study completed to determine the 

cost of finding, testing and fixing software bugs. We model the discovery of bugs or 

vulnerabilities in Section 3 using Cobb-Douglas function and calculate the defect rate 

per SLOC (source line of codes) using Bayesian calculations. Finally paper is 

summarized and concluded in Section 4. 

2  An analysis of coding practice 

A series of 277 coding projects in 15 companies with in-house developers was 

analyzed over multiple years. The costs, both in terms of time and as a function of 

financial expenditure were recorded. The analysis recorded: format string errors, 

integer overflows, buffer overruns, SQL injection, cross-site scripting, race 

conditions, and command injection. The code samples were analyzed by the authors 

using a combination of static tools and manual verification to the OWASP1 and 

SANS2 secure coding guidelines during both the development and maintenance 

phases. For the 277 coding projects, the following data fields have been collected: 

                                                           
1 http://www.owasp.org/index.php/Secure_Coding_Principles 
2 http://www.sans-ssi.org/ 
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  the total number of hours 

o Coding / Debugging (each recorded separately) 

  tloc (thousand lines of source code) 

  the number of bugs (both initially and over time as patches are released) 

The coding projects where developed using a combination of the Java, C# (.Net), 

PhP and C++ languages. The authors collected data between June 2008 and 

December 2010 during a series of Audits of both code security and system security 

code associated with [14]. The code projects came from a combination of financial 

services companies, media companies and web development firms. The data will be 

released online by the authors. 

It is clear from the results that there is an optimized ideal for software testing. Fig. 

1 demonstrates the costs of testing and notes how each subsequent bug costs more to 

find than the previous one. The costs of finding bugs go up as the cost of software is 

tested to remove more bugs.  

It has been noted that “there is a clear intuitive basis for believing that complex 

programs have more faults in them than simple programs” [9]. As the size and hence 

complexity of the code samples increased, the amount of time and costs required to 

write and debug the code increased (Fig. 2). What was unexpected was that the 

number of bugs/LOC did not significantly change as the size of the program increased 

(Fig. 3). Rather, there was a slight, but statistically insignificant decline in the number 

of bugs noted in more complex programs per line of code. So whilst the number of 

bugs did increase, this occurred in a linear fashion to the cost increase which occurred 

exponentially. 

The calculated number of hours per line of code (Fig. 2) increased exponentially 

with an exponent of around 1.56. In this study, the largest program sampled was 

approximately 300,000 SLOC (source lines of code). This relates directly to 

complexity with longer programs costing more both in time and money. 

A financial calculation of internal costs of mitigating the bugs was also conducted 

based on the bugs found within a year of the code being released. This period was 

selected as it comes to reason that if the bug has not been found in a 12 month period, 

it would be expensive to find.  

The results of the analysis of the data demonstrated that the costs of testing can be 

analyzed. In Fig. 1, the cost (calculated as a function of analysis time) of finding each 

additional bug is exponentially more expensive than the last to find. As a 

consequence, this also increases the mean cost of the project. The more bugs are 

sought, the higher the cost. This is offset against the costs of fixing bugs in the field 

later in the paper. 

Of particular interest is the distribution of bugs as a percentage of code. We can see 

that there is no strong correlation between the levels of bugs in code and the length of 

the code (R
2
 = -14.48 ). There are more bugs in large code, but the number of bugs 

per line does not increase greatly.  

The distribution of bugs was fairly even for all sizes of code in the study and was 

positively skewed. The numbers of bugs discovered was far too high. The reported 

numbers of bugs in large commercial software releases average around 4% [9]. The 

mean (Fig. 4) for the study was 5.529% (or 55 errors per 1,000 lines of source code). 

Many of these are functional and did not pose security threats, but the economics of 

repairing the remaining bugs remains.  



We need to move from "Lines of Code per day" as a productivity measure to a 

measure that takes debugging and documentation into account. This could be 

something such as "Lines of clean, simple, correct, well-documented code per day" 

[3]. This also has problems, but it does go a long way towards creating a measure that 

incorporates the true costs of coding.  

The primary issue comes from an argument to parsimony. The coder who can 

create a small, fast and effective code sample in 200 lines where another programmer 

would require 2,000 may have created a more productive function. The smaller 

number of lines requires less upkeep and can be verified far easier than the larger 

counterpart. 

Software maintenance introduces more bugs. Through an analysis of the debugging 

progresses and the program fixes, it was clear that systems deteriorate over time.  

What we see is that the first iteration of bug fixes leads to a second and subsequent 

series of fixes. In each set of fixes, there is a 20-50% (mean of 34%  8%
3
) of the fix 

creating another round of bugs. This drops on the second round of fixes, but starts to 

rise on the 3rd and subsequent rounds. In a smaller set of code, the low overall 

volume of bugs limits the number of iterations, but the larger code samples led to up 

to 6 iterations. This would be expected to be even larger on extremely large programs 

(such as an Operating System). 

The ratio of software bugs in the patching process was less than that of the initial 

release, but over the life of a program that has been maintained for several years, the 

total number of bugs introduced through patches can be larger than that of the initial 

release.  

 

 

Fig 1 Each vulnerability costs more than the last to 
mitigate 

Fig. 2 Program size against Coding time  

 

 

 
Fig. 3 Program size against Bugs Fig. 4 Box plot of the distribution of Bugs/TLOC 

                                                           
3 95% Confidence Interval or 5%   
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3  Vulnerability Modeling 

Vulnerability rates can be modeled extremely accurately for major products. Those 

with an extremely small user base can also be modeled, but the results will fluctuate 

due to large confidence intervals. What most people miss is that the number of 

vulnerabilities or bugs in software is fixed at release. Once the software has been 

created, the number of bugs is a set value. What varies stochastically is the number of 

bugs discovered at any time.  

This is also simple to model, the variance being based on the number of users (both 

benign and malicious) of the software. As this value tends to infinity (a large user-

base), the addition of any further users makes only a marginal variation in the 

function. Small user-bases of course have large variations as more people pay 

attention (such as the release of software vulnerability). 

This is a Cobb-Douglass function [10] with the number of users and the rate of 

decay as variables. For largely deployed software (such as Microsoft‟s Office suite or 

the Mozilla browser), the function of the number of vulnerabilities for a program 

given the size of the program can be approximated as a Poisson decay function. 

3.1  Modeling the discovery of bugs/vulnerabilities in software 

The discovery of software bugs can be mapped to the amount of time that has been 

used in both actively examining the product as well as the passive search for bugs 

(using the software).  

The study found that a Cobb Douglass function with α=1.6 and F(x)= c×TLOC +ε 

where c and C are constant values with the function G(x)
β
 is constant for a given 

number of users or installations and expresses the rate at which users report bugs. 

This equation increases to a set limit as the number of users increase. In the case of 

widely deployed software installations (such as Microsoft Word or Adobe Acrobat) 

and highly frequented Internet sites, this value tends towards G(x)=1.  

3.2  Equations for Bug Discovery 

For a static software system under uniform usage the rate of change in, N, the number 

of defects discovered is directly proportional to the number of defects in the system,  

   
d

N t N t
dt


 (1). 



A Static system is defined as one that experiences no new development, only 

defect repair. Likewise, uniform usage is based on same number of runs/unit time. As 

the user-base of the product tends to infinity, this becomes a better assumption. 

If we set time T to be any reference epoch, then N satisfies 

     t T
N t N t e

 


 (2) 

This means we can observe the accumulated number of defects at time t, A(t), 

where 

      1
t T

A t N t e
 

 
 (3) 

With continuous development, an added function to model the ongoing addition of 

code is also required. Each instantaneous additional code segment (patch fix or 

feature) can be modeled in a similar manner. 

What we do not have is the decay rate and we need to be able to calculate this. For 

software with a large user-base that has been running for a sufficient epoch of time, 

this is simple. 

This problem is the same as having a jar with an unknown but set number of red 

and white balls. If we have a selection of balls that have been drawn, we can estimate 

the ratio of red and white balls in the jar. 

Likewise, if we have two jars with approximately the same number of balls in 

approximately the same ratio, and we add balls from the second jar to the first 

periodically, we have a most mathematically complex and difficult problem, but one 

that has a solution. 

This reflects the updating of existing software. In addition, with knowledge if the 

defect rates as bugs are patched (that is the rate of errors for each patch), we can 

calculate the expected numbers of bugs over the software lifecycle. In each case, the 

number of bugs from each iteration of patching added 34% ± 8% more bugs than the 

last iteration.  

         

       

0 1

0

2

0 0 0 0

...

... 1

k

i k

i

k

A t A t A t A t A t

A t A t A t A t   



    

     


 (5) 

In the study, this would come to 

     
6

0 0

0

(0.34) 1.514i

i

A t A t A t


 
 (6). 

So over the life of the software, there are 1.51 times the original number of bugs 

that are introduced through patching. 

Where we have a new software product, we have prior information. We can 

calculate the defect rate per SLOC, the rate for other products from the team, the size 

of the software (in SLOC) etc. This information becomes the posterior distribution. 

This is where Bayesian calculations [11] are used. 

t  =  time  
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λB  = (Mean) Number of Bugs / TLOC (Thousand Lines of Code) 

L  =  SLOC (Source Lines of Code) 

So, more generally, if a software release has L lines of code and the expected 

number of lines of code per defect is λB, then the a priori distribution of defects in the 

release is a Poisson Pβ distribution where β is the ratio of new lines of code to average 

number of lines/bug  (L/ λB ) 

( )
!

n

defects

e
P n

n





 


 (7) 

The conditional distribution for the number of defects in a software release given a 

defect discovery T units of time since the last discovery is 

( _ )
!

n

P n defects e
n





 
 (8). 

Suppose the defect discovery (decay) constant is α and β
 
is the a priori expected 

number of defects (code size/lines of code per defect).  If we observe defects at time 

intervals of T1, T2, …, Tk, then the conditional distribution of remaining defects is 

Poisson: 

 
1 2

( ... )1 2

( ... )1 2

( ... )

( )

( )

!

k
T T Tk

T T Tk

T T T n
e

defectse

e
P n e

n










    

   

   


 (9) 

This is the a priori expected number of defects scaled by the decay factor of the 

exponential discovery model. 

 

As new releases to the software are made, the distribution of defects remains 

Poisson with the expected number of defects being the number remaining from the 

last release, γ plus those introduced, β, by the independent introduction of new 

functionality. 

   
   

( ) ( )

!

ne
P n

n

 

 

  






   (10).  

It is thus possible to observe the time that elapses since the last discovery of a 

vulnerability. This value is dependent upon the number of vulnerabilities in the 

system and the number of users of the software. The more vulnerabilities, the faster 

the discovery rate of flaws. Likewise, the more users of the software, the faster the 

existing vulnerabilities are found (through both formal and adverse discovery).   

4  Conclusion 

To represent the effect of security expenditure in minimizing bugs against investment 

over time and the result as expected returns (or profit) we see that there are 

expenditure inflection points. What we see is that spending too much on security has a 

limiting function on profit. Also too little expenditure has a negative effect on profit 



as the cost of discovering bugs post release increases. This is where risk analysis 

comes into its own. The idea is to choose an optimal expenditure on security that 

limits the losses. Money should be spent on security until that last dollar returns at 

least a dollar in mitigated expected loss. Once the expenditure of a dollar returns less 

than a dollar, the incremental investment is wasted. Here, the software coder has to 

optimize the testing process.  

Modeling and understanding program risks is essential if we are to minimize risk 

and create better code. It was clear from this study that organizational coding 

expresses a far higher rate of bugs per line of code than is expressed in specialized 

software companies. Insufficient testing is being conducted in many companies who 

have in-house coding teams. This is leading to higher costs and lower overall security. 

The goal for any coding team should be how many lines of good code are 

produced, not how many lines of code are written and then sent to be fixed. 
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