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Abstract 

As the value of bitcoin increases, more incidents such as those 
involving Mt Gox and Bitfinex will occur in standard centralised 
systems. The addition of group based threshold cryptography 
with the ability to be deployed without a dealer and which 
supports the non-interactive signing of messages provides for 
the division of private keys into shares that can be distributed to 
individuals and groups to provide additional security. This 
scheme creates a distributed key generation system for bitcoin 
that removes the necessity for any centralised control list 
minimising any threat of fraud or attack. In the application of 
threshold based solutions for DSA to ECDSA, we have created 
an entirely distributive signature system for bitcoin that 
mitigates against any single point of failure. When coupled with 
retrieval schemes involving CLTV and multisig wallets, our 
solution provides an infinitely extensible and secure means of 
deploying bitcoin. Using Group and ring based systems we can 
implement blind signatures against issued transactions. 

 

Keywords: Bitcoin, ECDSA, Elliptic Curve Cryptography, 
Threshold Cryptography 

 

I. Introduction 

In this paper, we present a threshold based dealerless private key distribution system that is fully 
compatible with bitcoin. The system builds on a group signature scheme that departs from the traditional 
individual signing systems deployed within bitcoin wallets. As deployed, the system is both extensible 
and robust tolerating errors and malicious adversaries. The system is supportive of both dealer and 
dealerless systems and deployment in an infinitely flexible combination of distributions. 
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Individual parties can act as single participants or in combination as a dealer distributing slices of their 
protected key slice across machines for security and recoverability or in groups for the vote threshold 
based deployment of roles and access control lists. 

There is no limit to the depth of how far a slice can be divided. This issue of complexity needs to be 
weighed against the distinct deployment. In this manner, as the record of signing and transactions can 
be hidden using this methodology from outside participants all with extensions to be presented in a 
subsequent paper even from those within the groups, we have introduced a level of anonymity and 
plausible deniability into bitcoin transactions increasing the standard of pseudonymous protection to 
the users. 

Ibrahim et al. [2003] developed an initial robust threshold ECDSA scheme. The following protocol is 
a further extension of what forms the elliptic curve form of the threshold DSS introduced by Gennaro 
et al. [1996]. 

Table 1 Definitions  

m   The message incl. Bitcoin transaction 

 e H m
  

The hash of the message 

CURVE The elliptic curve and field deployed (summarised as E) 
G   The elliptic curve base point.  This point is a generator of the elliptic curve with large 

prime order n  
n  Integer order of G  such that n  x  G  =    

This is defined as the number of rational points that satisfy the elliptic function and 
represents the order of the curve E. 

k   The threshold value for the key splitting algorithm.  This value represents the number 

of keys needed to recover the key.  The secret is safe for  1k   shares or less and 

hence can be retrieved with k shares. 

Ad
  A private key integer randomly selected in the interval  1, 1n      

AQ
 The public key derived from the curve point AQ = Ad  x G  1  

  Represents elliptic curve point multiplication by a scalar 
j The number of participants in the scheme. 

 

The use of group mathematics allows is to create a verifiable secret sharing scheme (VSS) that extends 
the work of Shamir [1979] in secret hiding and that of Feldman [1987] and Pedersen [1992] from RSA 
and DSA schemes so that we can use it within ECC and ECDSA-based Signature systems such as 
Bitcoin [Koblitz, 1998]. Our system is tolerant against malicious adversaries, halting and is robust 
against eavesdropping.  

In this paper, we start by presenting a method to allow for the cooperative signing of ECDSA signatures 
where no one-party ever knows the private key. Moreover, we allow for the private key pairs to be 
updated and refreshed without the necessity of changing the private key. In a subsequent paper 
following this one, we will detail the mathematics needed to add and remove members to a group while 
maintaining the secrecy and privacy of the private key.  

This process will also be extended in sister papers to demonstrate how cooperative computations can 
be performed while the output is dependent on the secure input of separate entities in a manner that 

                                                      

1 Bitcoin uses secp256k1. This defines the parameters of the ECDSA curve used in Bitcoin, and may be 
referenced from the Standards for Efficient Cryptography (SEC) (Certicom Research, http://www.secg.org/sec2-
v2.pdf). 
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does not require trust. Existing solutions all require a trusted party. Utilising the solution presented in 
this paper will also allow us to extend the work of Chaum [1983] from a centralised system into a truly 
distributed manner of issuing electronic notes that can be settled directly on the Bitcoin Blockchain 
making the requirements for alternate Blockchains or sidechains obsolete.  

Matters of trust 

All existing systems require some level of trust. Until this time, bitcoin has needed the protection of a 
private key using a secure system that is isolated from the world in which has proven difficult to achieve. 
Of note, systems where Bitcoin can be exchanged or stored, require trust in a centralised authority. Our 
work changes this requirement entirely distributing and decentralising the key creation and message 
signing processes within bitcoin while not changing any of the core requirements of the protocol. The 
methodologies noted in this paper may be implemented without modifying the bitcoin protocol and in 
fact, there is no way to determine whether this process has been deployed through the analysing of a 
signed message. 

In creating a distributed signature scheme for Bitcoin, we allow for a group of people or systems to 
securely hold a key in a way that leaves no individual capable of generating a signature on their own. 
When extended, this scheme also allows for the secure recovery of each of the shares as well as the 
bitcoin private key itself. The group generated signature is indistinguishable from that generated from 
the existing protocol. As such signature verification remains as if it was enacted through a single person 
signer using a standard transaction. 

This increase in trust is achieved as the secret key is shared by a group of n participants or m groups of 
participants. A threshold number of participants is required for the signing of a transaction, and any 
coalition of participants or groups of participants that meet the minimum threshold can perform the 
signature operation. Importantly, this protocol can be enacted synchronously or as a batched process 
where individuals or groups can attempt to create a coalition of participants. 

II.Prior work 

Shamir [1979] first introduced a dealer based secret sharing scheme that allowed for a distributed 
management of keys. The problems associated with this scheme come from the necessity of trusting a 
dealer who cannot be verified. This form of the scheme is fully compatible with the current system 
presented in this paper and can be used for group distribution of individual key slices that are created 
through the process noted herein. 

Joint Random Secret Sharing (JRSS) [Pedersen, 1992] 
The stated aim of this procedure is to create a method where a group of participants may collectively 
share a secret without any participant having knowledge of the secret. Each participant selects a random 
value as their local secret and distributes a value derived from this using SSSS with the group. Each 
participant then adds all the shares received from the participants, including its own. This sum is the 
joint random secret share. The randomness offered by a single honest participant is sufficient to 

maintain the confidentiality of the combined secret value. This state remains true even if all 
 1n

 
other participants intentionally select non-random secret values). 

Joint Zero Secret Sharing (JZSS) [Ben-Or, 1988] 
JZSS is like JRSS, with the difference that each participant shares 0 as an alternative to the random 
value. The shares produced using this technique aid in removing any potential weak points in the JRSS 
algorithm. 

Desmedt [1987] introduce the concept of group orientated cryptography. This process allowed a 
participant to send a message to a group of people in a manner that only allowed a selected subset of 
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the participants to decrypt the message. In the system, the members were said to be known if the sender 
must know them using a public key and the group is anonymous if there is a single public key for the 
group that is held independently of the members. Our system integrates both methodologies and allows 
for known and anonymous senders and signers to exist within a group simultaneously. 

III. Methods 

For any elliptic curve (CURVE) with a large order prime, and a base point  pG CURVE  of order 

n defined over the prime field p ; we can create a system that allows for the secure distribution of an 

ECC private key into key shares and its use without any participant being able to recreate the original 
private key from less than a threshold of shares. 

For an unknown integer Ad where  1 1A nd   we know that it is extremely difficult to calculate 

Ad given AQ = Ad G  [Kapoor, 2008]. 

Our fundamental technique is derived using the application of threshold cryptography. In this system, 
the ECDSA private key only exists as a potential and need never be recreated on any system. Each of 

these multiple shares are distributed to multiple participants [  ip ] in a manner that is extensible and 

allows for the introduction of both group and individual party signature formats. Thus, the signing 

process differs from that deployed within bitcoin. In this process, a coordinating participant  cp  creates 

a transaction and a message signature that is distributed to the group. Each participant can vote on the 
use of its private key share by either computing a partial signature or passing. 

In effect, passing would be equivalent to a no vote. The coordinating participant  cp  will collate the 

responses and combine these to form a full signature if they have received the minimum threshold 
number of partial signatures. 

The coordinating participant  cp  can either accept the no vote and do the calculation based on a null 

value from the other party or can seek to lobby the party and convince them to sign the message. The 
protocol can be implemented with a set coordinator, or any individual or group can form this role and 
propose a transaction to the threshold group to be signed. Our system extends the work of Ibrahim et. 
al. [2003] providing a completely distributed ECDSA private key generation algorithm. This paper also 
presents a distributed key re-sharing algorithm and a distributed ECDSA signing algorithm for use with 
bitcoin. The key re-sharing algorithm may be used to invalidate all private key shares that currently 
exist in favour of new ones or for the reallocation of private key shares to new participants. This protocol 
extends to the sharing of not only the ECDSA private key but to private key shares as well. The 
consequences of this mean that shares can be constructed and voted on as a group process. 

This system removes all requirements for a trusted third party to exist. Consequently, it is possible to 
create the new overlay and wallet for Bitcoin that is entirely compatible with the existing protocol and 
yet removes any remaining single points of failure while also allowing greater extensibility. This system 
can also be extended to allow for the introduction of blind signatures. 

As our system does not require a private key ever to be loaded into memory, we not only remove the 
need for a trusted third party but further remove a broad range of common attacks. The protocol is 
extensible allowing the required number of shares and the distribution of shares to be decided by the 
use case, economic scenario and risk requirements. 
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The system we have implemented mitigates all side channel attacks and thus any cache timing attacks. 
This system takes the work of Gennaro et. al. [1996] and extends it from DSS such that it can be 
successfully used in any ECDSA based application. 

ECDSA 
Bitcoin uses ECDSA based on the secp256k1 curve. ECDSA was first standardised by NIST in 2003 
[NIST] varying the requirements for Diffie-Hellman-based key exchanges using elliptic curve 
cryptography (ECC). The creation of ECC was particularly important due to the reduction in key size 
and processing power when compared to other public/private key systems. No sub-exponential time 
algorithm has been discovered for ECDLP. ECDLP is known to be intractable and refers to the elliptic 
curve discrete logarithm problem [Johnson, 2001].  

The parameters used throughout this paper are documented in Table 1. 

Security considerations 
The system is bounded by the security of ECDSA which is a current limitation within bitcoin. At 
present, ECDSA remains secure if a private key can be securely deployed. Our system mitigates side 
channel attacks and memory disclosure attacks up to the threshold value requiring that the threshold 
number of participants have been compromised before the rekeying event. Additionally, any 
uncompromised threshold majority will be able to identify compromised participants at less than the 
threshold value. 

Halting problems 
Service disruption is a form of attack that can be engaged in by a malicious adversary attempting to 
create a denial of service attack against the participants. This attack would require the participants to 
either receive invalid signatures that they would expend processing time analysing or through flooding 
network messages that would be subsequently dropped. 

The requirement to encrypt messages to the participants using either ECC or signcryption based ECC 
mitigates this attack vector. Before an attacker can send invalid partially signed messages, they would 
need to have already compromised a participant, making this form of attack no longer necessary. 

Randomness 
Algorithm 2 provides a scenario where sufficient randomness is introduced even if (n-1) participants 
fail to choose random values. A possible addition to this protocol is the introduction of group oracles 
designed solely for the introduction of random values to the signing and rekeying process. In this 
optional scenario, each of the key slices can be generated using the same protocol. For instance, if we 
have an m of n primary slice requirement, each of the underlying key slices can also be generated and 
managed using an m’ of n’ threshold condition. 

A participant using this system would be able to have the addition of an external Oracle that does 
nothing other than injecting randomness into the protocol. A user with m’ key slices (where m’<n-1) 
could choose to recreate and process their signature solution based on the key slices they hold or may 
introduce an external Oracle that is unnecessary other than for the introduction of randomness. 

Each slice could be likewise split for robustness and security. The key slice could be distributed such 
that the user has a slice on an external device such as a mobile phone or smartcard and a software 
program running on a computer such that the combination of sources would be required for them to 
create a partial signature.  

It is important that a unique random ephemeral key kD  is produced or it would be possible to use the 

information to recreate the private key Ad . 
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Public signing 
The primary purpose of transactional signing using this protocol is to enable the distributed signing of 
the bitcoin transaction. Any transaction that has not been published to the Blockchain can be maintained 

privately by the participants. Therefore, if a coordinating participant  cp  on any occasion has not been 

able to achieve the required level of votes to sign a transaction successfully, it is not necessary to create 
a new bitcoin transaction. The ownership of any settled transaction remains secure if the key slices are 
themselves secure to the threshold value. 

If the system is deployed well, the ability to compromise up to (k-1) participants leaves the system 
secure to attack below the threshold value. When coupled with a periodic rekeying protocol (Algorithm 
2), our system can withstand side channel attacks and memory disclosures. 

Method and implementation 

As the protocol encrypts the secret information required to be sent between participants using ECC 
based on a hierarchical derivation [Wright, 2016] it is both possible and advisable to collate all messages 
into a single packet sent to all users such that validation can be done against potentially compromised 
or hostile participants when necessary. 

Signature generation is proposed by a coordinating participant  cp . By default, any key slice can act as 

the coordinating participant and the requirements come down to the individual implementation of the 
protocol. The algorithms used are documented below, and a later section provides detail as to their 
deployment. 

Algorithm 1  Key Generation 

Domain Parameters (CURVE, Cardinality n , GeneratorG ) 

Input:   NA 

Output:  Public Key AQ  

Private Key Shares      1 2 , ,,A A A jd d d   

For our threshold of k slices from  j participants, we have a constructed key segment  iAd which is 

associated with participant  i  and  1j  participants nominated as participant  h that are the other 

parties that participant  i exchanges secrets with to sign a key (and hence a Bitcoin transaction). 

 In the scheme, j  is the total number of participants where k j  and hence 1h j   

 Hence, we have a  ,k j  - threshold sharing scheme. 

The method for algorithm 1 follows: 

1) Each participant  ip of (j) where1 i j   exchanges an ECC public key (or in this 

implementation, a Bitcoin address) with all other participants. This address is the Group identity 
address and does not need to be used for any other purpose. This can be formed of a “Type 42” 
address of any form or level of the hierarchy (Patent 222). The exchange of symmetric keys for 
participants is completed using the method in patent 42. 
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Note this is a derived address [Wright, 2016] and key based on a shared value between each of the 
participants from the process of “Determining a common secret for two Blockchain nodes for the secure 
exchange of information”. 

2) Each participant  ip selects a polynomial  if x  of degree  1k   with random coefficients 

in a manner that is secret from all other parties.   

This function is subject to the participant’s secret  i
0a that is selected as the polynomial free term.  This 

value is not shared. This value is calculated using a derived private key [Wright, 2016]. 

We define  if h to be the result of the function,  xf that was selected by participant  ip for the value 

at point  x h , and the base equation for participant  ip is defined as the function:

  
 
p 0

1
x

kf 
   p

pa x modn   

In this equation, 0a is the secret for each participant  ip and is not shared. 

Hence, each participant  ip has a secretly kept function  if x that is expressed as the degree (k-1) 

polynomial with a free term ( )
0
ia being defined as that participant’s secret such that: 

  
 

0
1

i x

kf  
   a x

 modn  

3) Each participant  ip encrypts  if h  to participant  hP  ∀ h=     1, , i 1 , i 1 , , j     

using  hP ’s public key2 [Wright, 2016] as noted above and exchanges the value for  hP to 

decrypt.  

Note that n G   for any basic point ( )pG E  of order n for the prime p3.   

As such for any set of integers B: i nb   that can be represented as  1 2,, ,b b b  , if

 1 2 modbG b G b G p   , then  1 2 modb b b n   . Further, if  1 2 modb bG b G p  then

 1 2 mod nbb b  . 

                                                      

2 A related research paper will detail how the process of “Determining a common secret for two Blockchain 
nodes for the secure exchange of information” and the sharing of keys may be integrated. 
3 In the case of bitcoin the values are: 

Elliptic curve equation:  2 3    7y x   

Prime modulo:   2256 – 232 – 29 – 28 – 27 – 26 – 24 - 1  
= FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F 

Base point  =   
04 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798 483ADA77 
26A3C465 5DA4FBFC 0E1108A8 FD17B448 A6855419 9C47D08F FB10D4B8 
 
Order =  FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B BFD25E8C D0364141 
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Given that n  is a field and we can validly do Lagrange interpolation modulo n  over the values 

selected as ECC private keys, we have a condition which leads to the conclusion that Shamir’s Secret 
Sharing Scheme SSSS [5] can be implemented over n . 

4) Each participant  iP  broadcasts the values below to all participants. 

a) 
 ia G     0, , 1k      

b)  if h G
  1, ,h j     

The value associated with the variable h in the equation above can either be the position of the 

participant  hP such that if participant  hP  represents the third participant in a scheme, then h=3 or 

equally may represent the value of the ECC public key used by the participant as an integer. Use cases 

and scenarios exist for either implementation. In the latter implementation, the value  1, ,h j 
would be replaced by an array of values mapped to the individual participant’s utilised public key. 

5) Each participant  h iP   verifies the consistency of the received shares with those received from 

each other participant. 

That is:  

 
   

1 ?

0

h h
k

i
ia G f










  

And that  if h G  is consistent with the participant’s share. 

6) Each participant  h iP   validates that the share owned by that participant (  h iP  ) and which was 

received is consistent with the other received shares: 

   0 hi
h h ia G b f G    ∀  h iP   

If this is not consistent, the participant rejects the protocol and starts again. 

7) Participant  ip  now either calculates their share  A id as: 

SHARE(  ip ) =  A id  =  h 1 modj
h if n   

Where:  SHARE(  ip ) n  and  A jd  

and 

 Where:   1 , ,A jQ Exp Interpolate f f     AdG   

 Return    ,A Aid Q   

Participant  ip  now uses the share in calculating signatures. This role can be conducted by any 

participant or by a party  cp that acts as a coordinator in the process of collecting a signature. The 
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participant can vary and does not need to be the same party on each attempt to collect enough shares to 
sign a transaction. 

Hence private key shares  iAd  ← *
n  have been created without knowledge of the other participant’s 

shares.   

Algorithm 2  Updating the private key 

Input:   Participant iP  ‘s share of private key Ad  denoted as  A id . 

Output:  Participant iP ’s new private key share  A id . 

Algorithm 2 can be used to both update the private key as well as to add randomness into the protocol. 
In a follow-up paper related to this one, we will demonstrate how this algorithm can be extended to 
allow group additive and subtractive processes. In this manner, it will be possible to create distributed 
key sets where the private key is never created or issued and yet transactional signatures can be 
completed. More importantly, this system will be extensible through the addition and removal of 
members within a hierarchy of groups. 

Using US patent number 15087315 [Wright, 2016] format keys, this process can lead to the 
recalculation of hierarchical sub-keys without the reconstruction or even calculated existence of the 
private keys. In this manner, we can construct hierarchies of bitcoin addresses and private key slices 
that when correctly deployed will remove any large-scale fraud or database theft as has occurred in the 
past. 

1) Each participant selects a random polynomial of degree  1k   subject to zero as it’s free term.  

This is analogous to Algorithm 1 but that the participants must validate that the selected secret 
of all other participants is zero.   

Note that: 0G nG    where 0is a point at infinity on the elliptic curve. 

Using this equality, all active participants validate the function: 

 
0
ia G     ∀  1, ,i j   

See Feldman (1987) for an analogy. 

Generate the zero share: iz  ← *
n   

2)     iA i A id d z     

3) Return:    A id   

The result of this algorithm is a new key share that is associated with the original private key. A variation 
of this algorithm makes the ability to both increase the randomness of the first algorithm or to engage 
in a re-sharing exercise that results in new key slices without the need to change the bitcoin address 
possible. In this way, our protocol allows a group to additively mask a private key share without altering 
the underlying private key. This process can be used to minimise any potential key leakage associated 
with the continued use and deployment of the individual key shares without changing the underlying 
bitcoin address and private key. 
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Algorithm 3  Signature Generation 

Domain Parameters: CURVE, Cardinality n , Generator G   

Input:   Message to be signed   e H m   

Private Key Share   
*
nA id G   

Output:  Signature    ,r s  ϵ *
n  for   e H m  

A) Distributed Key Generation 
1) Generate the ephemeral key shares using Algorithm 1: 

 k iD ← n
  

2) Generate Mask shares using Algorithm 1: 

i ← n  

3) Generate Mask shares with Algorithm 2: 

,i ib c  ← 2
n  

B) Signature Generation 

4)  e H m  Validate the hash of the message m   

5) Broadcast 

( ) modi k i i iD n      

And 

i iG     

6)  , , modi nInterpolate n      

 modkD n  

7)  1, , nExp Interpolate      

 G    

8) Calculate  ,x yR R where   1
, ,x y x yr R R      

   1]kG D     

9) modx xr r R n    

If 0r  , start again (i.e. from the initial distribution)  

10) Broadcast    ( )e modi A i ik iS D D r C n     
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11)  , mo, di nS Interpolate s s n    

   If 0s   redo Algorithm 3 from the start (A.1). 

12) Return  ,r s   

13) In Bitcoin, reconstruct the transaction with the  ,r s  pair to form a standard transaction. 

IV. The Model - Threshold ECDSA (T.ECDSA) 

In our model, we allow for the system of n groups or individuals that we designate as participants. Each 

player can be an individual is a soul participant or a group or combination of the above. Participant  ip  

may be mapped against an identity using a commonly derived public key calculation or participant  ip

may be left as a pseudonymous entity with the public key of the participant used only for this protocol 
without being mapped back to the individual. 

This system introduces a dedicated broadcast channel allowing for the recognition of other participants 
as a valid player and a member of the scheme while simultaneously allowing members within the group 

to remain unidentified. When a message is broadcast from participant  ip , the members within the 

group will recognise the message as coming from an authorised party without necessarily being able to 
identify the end user or individual that is associated with the key. It is also possible to link the identity 
of the key to an individual is such a system were warranted.  

We see this process flow summarised below:     

Step 1) 

 1)    

 

 

           3            2 

 

 

 

 

 

 

     K  

 

 

 

 

Pc  
Co-ordinator creates a valid but 
unsigned raw Bitcoin transaction 

 e H m   

Pi  Pi j   

P   
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Step 2) Pc sends the raw transaction to the Group.  If this validates (i.e. the raw transaction matches 
the Hash to be signed), the participant votes by signing it. 

Step 3) If Yes, each Participant returns the partially signed transaction. 

   5 

 

 

Step 4) Pc (or any other Participant) reconstructs the complete signature if a threshold of partially 
signed transactions are received. 

Step 5) Pc broadcasts the transaction as a signed Bitcoin transaction. 

The calculation of a message signature can be initiated by an individual who does not change, or through 
a temporary broadcasting party. The role of the protocol coordinator can be conducted by any 

participant or by a party  cp
that acts as a coordinator in the process of collecting a signature. The 

individual scenario can be constructed ahead of time in a manner that allows for any member of the 

system as participant  ip
to step forth as the coordinating party  cp

in proposing a scenario that leads to 
a transaction signature if the required votes are obtained or may be based on the necessity to get 
authorisation through a set coordinator that does not change throughout the process. A subsequent paper 
will document this process in greater detail. 

Key Generation  

We use a modified ECDSA key generation algorithm to make a signature scheme that is fully 
distributed. In this scheme, the private key is communally selected by the distributed group using a 
combination of hidden random secrets.  

The threshold key derivation algorithm is given in Algorithm 1.  

The algorithm is extensible, and each step of the algorithm can be executed by every participant 
synchronously without a dealer or in groups or individuals or dealers. This implementation is fully 
compatible with the current bitcoin protocol. Any signatories will appear to an outside observer or 
verifier as if they were signed in the standard manner. Consequently, there is no way to tell if a key has 
been generated in the standard format or using our enhanced protocol. 

Signature Generation  

The concept of threshold signature generation is described in [Shamir, 1979]. Algorithm 3 is related to 
a procedure reported in [Feldman, 1987] that was based on DH based systems and has been modified 
to allow for ECDSA. 

We’ve extended this process such that it is fully compatible with both Bitcoin transaction processing 
and signing. This also extends to multisig transactions where it is possible to require distributed keys 
for each of the multiple signatures that are necessary. 

Re-sharing the Private Key  

This process can be extended to introduce an entirely distributed key re-sharing scheme. This re-
distribution is completed when the current participants execute one round of Algorithm 2 adding the 
resulting zero-share to the participant’s private key share. The new shares will be randomly distributed 
if one participant has introduced a random value. 

Pc  

④ 
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This process allows us to additively mask the private key share while not altering the actual private key.  

Threshold ECDSA Signature Derivation 

The threshold ECDSA signature creation system derived using the ideas related to the threshold DSS 
signature generation protocol found in [Feldman, 1987] which followed the scheme developed in 
[Shamir, 1979].  

Verification 

Our system allows for the off-line signing and verification of messages before any value being 
transferred to a known bitcoin address. Each of the parties can calculate and validate an address 
independently using the processes noted in Algorithm 1. Hence, all participants can are aware that their 
share is valid before any exercise that requires funding a bitcoin address. For this process, although 
verification schemes are possible, they are unnecessary. Any threshold participant who chooses to send 
an invalid signature slice is in effect voting for the negative. That is, a vote to not sign the message and 
hence not complete the transaction in bitcoin is achieved from inaction. The impact is as if they did not 
sign a message at all. 

Algorithm 2 provides a method where participants can have their share consistency verified. If a 
threshold of non-malicious participants has been maintained, it is possible to exclude any known 
malicious participants on rekeying. Hence key slices can be updated while not allocating fresh slices to 
known malicious participants, allowing for the refreshing of the key in a manner that also allows for 
reallocations of slices. 

In environments where trust is particularly scarce and malicious adversaries are to be expected as the 
norm, we can further enhance the robustness of our verification process increasing the ability to defend 

against an 2
j  passive and an 3

j  active adversary [Ben-Or, 1989; Rabin, 1988] when completing 

secure multiparty computations.  

We can enhance the robustness of the system using the additional process: 

1. Let aD  be the secret shared among the j participants on a polynomial  x of degree ( 1).k   

2. Separately participants  ip  have a share ( )a iD of aD and  ( ) 0,...,a iD G i j   which are made 

available to the group.  

3. All participants next share a secret b using Algorithm 2 such that each participant  ip has a 

new hidden share ( )b iD of bD on a polynomial of degree ( 1)k  .  

Note:  ( )
( ) ( )1

j h
b i b ih

D D


 , where ( )
( )
h

b iD  is the sub-share submitted to participant  ip  from participants 

 h ip  .  

4. The participants use Algorithm 2 so that each participant  ip  has a new hidden share ( )i  on 

a polynomial of degree (2 1)k   of which the free term equals zero. 

5. Each participant  ip  publishes  ( )
( ) ( ) 0,...,h

a i b iD D G h j   and ( ) ( )a i b iD D G to the group.  

6. Each participant  h ip   can verify the validity of ( )
( ) ( )

h
a i b iD D G as they have ( )

( )
h

b iD  and ( )a iD G .  

7. Also, participant  ip  can further verify that ( )
( ) ( ) ( ) ( )1

j h
a i b i a i b ih

D D G D D


  . 

Any participants can determine if other participants are acting maliciously with this system. 

Electronic copy available at: https://ssrn.com/abstract=3265164



A0026: A distribution protocol for dealerless secret distribution 

Page | 14  
 

V.Distributed Key Generation 

It is possible to complete the implementation of both distributed autonomous corporations (DACs) and 
distributed autonomous social organisations (DASOs) in a secure manner through this scheme. We have 
shown that any k members can represent such a group through an identification scheme (including 
through digital certificates signed and published by a certification authority) and that any k members 
can construct a digital signature on behalf of the organisation. This system extends to the signing of 
bitcoin transactions that verify without any distinguishing feature and provide for the transfer of value. 
These authentication schemes are proven secure. 

Method and implementation 

As the protocol encrypts the secret information required to be sent between participants using ECC 
based on a patent 42 derivation, it is both possible and advisable to collate all messages into a single 
packet sent to all users such that validation can be done against potentially compromised or hostile 
participants when necessary. 

Signature generation is proposed by a coordinating participant  cp
. By default, any key slice can act as 

the coordinating participant and the requirements come down to the individual implementation of the 

protocol. On the creation of a valid raw transaction by  cp
, the transaction and the message hash of the 

transaction are broadcast to all participants  i cp  using an encrypted channel. 

A. Generate ephemeral key shares Dk(i) 

The participants generate the ephemeral key Dk, uniformly distributed in *
n , with a polynomial of 

degree (k-1), using Algorithm 1, which creates shares  
 ( 1), )

(1) ( ), , mod
k j

k k j kD D D n


 . 

Shares of kD  are maintained in secret being held individually by each participant. 

B. Generate mask shares i   

Each participant generates a random value i , uniformly distributed in *
n  with a polynomial of degree 

(k-1), using Algorithm 1 to create shares  
 ( 1),

1, , mod
k j

j n  


 . These are used to 

multiplicatively mask Dk(i).  

The shares of i  are secret and are maintained by the corresponding participant. 

C. Generate mask shares ,i ic   

Execute Algorithm 2 twice using polynomials of degrees 2(k-1).  

Denote the shares created in these protocols as  
 2( 1),

1, , mod
k j

j n  


  and

 
 2( 1),

1, , mod
k j

jc c c n


 . These are used as additive masks. The polynomial must be of degree 2(k-

1) because the numbers being masked involve the products of two polynomials of degree (k-1). This 
doubles the required number of shares needed to recover the secret.  
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The shares of b and c are to be kept secret by the participants. 

D. Compute digest of message m: e = H(m) 

This value is checked against the received hash of the transaction obtained from  cp . 

E. Broadcast ( ) modi k i i iD n     and i iG      

Participant Pi broadcasts ( ) modi k i i iD n    and i iG   .  

If no response is received from Pi, the value used is set to null.  

Note:   
 2( 1),

1 , , mod
k j

j kD n  


  

F. Compute  µ = Interpolate  1, , modj n   

Interpolate() [2]:  

Where     1, , 2 1n j k     forms a set, such that at most of (k-1) are null and all the 

residual values reside on a (k-1)-degree polynomial  .F , then  0F   .  

The polynomial can be computed using ordinary polynomial interpolation. The function “Interpolate()” 
is the Berlekamp-Welch Interpolation [2] and is defined4 as an error correcting algorithm for BCH and 
Reed-Solomon codes. 

G. Compute     = Exp-Interpolate  1, , j    

Exp-Interpolate() [10]:  

If   1, , (2 1)j j k     is a set where at most (k-1) values are null and the remaining values are 

of the form iG  , and each i  exists on some (k-1)-degree polynomial H(ꞏ), then   = G × H(0). 

Thi value can be computed by   i i ii V i V
G H i   

 
      β for which V is a (k)-subset 

of the correct i values and further, i  represent the resultant Lagrange interpolation coefficients. The 

polynomial can be computed by using the Berlekamp-Welch decoder. 

H. Compute (Rx,Ry) =   × µ−1 
I. Assign r = Rx mod q  If r = 0, go to step A. 

Each participant  ip computes their slice of ir in step J. The coordinator  cp can use these values to 

reconstruct s if they have received a threshold number of responses. 

J. Broadcast  ( ) ( ) modi k i A i is D e D r c n     

                                                      

4 http://mathworld.wolfram.com/LagrangeInterpolatingPolynomial.html  
See also Whittaker, E. T. and Robinson, G. "Lagrange's Formula of Interpolation." §17 in The Calculus of 
Observations: A Treatise on Numerical Mathematics, 4th ed. New York: Dover, pp. 28-30, 1967. 
https://jeremykun.com/2015/09/07/welch-berlekamp/  
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If a response is not solicited/received from Pi, the values used are set to null.  

Note:   
 

 
2( 1),

1, , mod
k j

j k As s D m D r n


   (s1,...,sn) ←→ k(m + AD r) mod n. 

K. Compute  s = Interpolate (s1,...,sn) mod n 

If s = 0, go to step I.  

See above for the meaning of the function Interpolate(). 

Each participant  ip computes their slice of is in step J. The coordinator  cp can use these values to 

reconstruct s if they have received a threshold number of is responses. 

L. Return (r,s) 
M. Replace the signature section of the raw transaction and broadcast this to the network. 

Dealer distribution of slices 

The system derived above can be made much more flexible through the introduction of group shares. 
In this manner, the allocation of shares can be split between a dealer, multiple dealers, a group 
containing no dealers or any possible combination of the above in any level of hierarchical depth. 

By replacing the value Ad and its corresponding key slice  iAd with a value derived using the same 

algorithm, we can create hierarchies of votes. For example, we can create a scheme that simultaneously 
integrates shares that are derived from: 

1) Dealer based distributions 
2) Multiple Dealers 
3) No Dealer 

Hence, the scheme is extensible and can be made to incorporate any business structure or organisational 
system.  

The allocation of slices is also extensible. Deploying an uneven allocation process allows us to add 
weighting on shares. In the scheme displayed in figure 1, we can create a hypothetical organisation with 
five top-level members. This, however, does not require setting the value of n=5 equally weighted 
shares. In our hypothetical organisation, we could set the voting structure for the top-level schema as 
follows: 

 Threshold(0)  61 Shares   
 

20LD    15 Shares  

 1LD    15 Shares  

 2LD    15 Shares  

 1D    45 Shares  

 2D    10 Shares  

Here we have set n=100. As noted this is an arbitrary value that can reflect any organisational structure. 
The organisation in figure 1 allows for a veto scenario ( 1D ) and through the introduction of multi-

layered allocation allows for any voting structure that can be imagined. 

What is often missed in a multilevel hierarchical structure is that although we have allocated slices of 
the secret these do not need to be evenly distributed and further, the ownership of subgroups does not 
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need to mirror that of other levels. In figure 1 we have a seemingly powerful block controlling 45% of 
the total number of shares in 75% of the threshold. If we then look at the lower-level allocation of the 
shares, the scenario becomes far more complex. We can create cross-ownership with individuals 
holding voting shares in multiple levels and positions on the table.  

The distributions in Table 3 are defined as (Shares held, Threshold, Allocation {n}). 

 

S 

    
                  

2LoD  1LD           2LD       1D       2D  

 

 

          1AD             1BD            2 AD        RBD         2CD  

Figure 1. Secrets can be distributed in reconstructive hierarchies. 

From the table above (3), we see that participants P1 and P2 each hold sway over the votes but that they 
coalition with participant P4 provides either P1 or P2 with a sufficient voting block as long as P1 or P2 
does not veto the vote.  

As there are no limits to the implementation and structure of the voting format in our system, we can 
use this to create any organisational hierarchy that can be imagined as well as ensuring secure backup 
and recovery methodology. 

Table 3 Hypothetical organisation structure 

Participant Level 0 Level 1 S.Votes (Max) S.Votes (min) 
P 1 

20LD

(15,61,100) 
1AD

(5,6,10) 

70 15 

  
2 AD

(3,8,10) 

  

P 2 
1LD  

(15,61,100) 
1BD

(5,6,10) 

70 15 

  
2BD

(3,8,10) 

  

P 3 
2LD  

(15,61,100) 

 15 0 

P 4  
2CD  

(6,8,10) 

10 0 

The result is that we can have veto powers and voting rights that are assigned to higher level signing 
shares. In our example ownership of the shares in S could be held at, 

20LD , 1AD and 2 AD . 

Secure Multi-Party Computation 

Secure multi-party function computation with n participants,      1 ,..., ,...,i np p p  is a problem based 

on the need to assess a function  1 , ..., , ...,i nx x x , involving  ix , a secret value provided by  ip that 
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is required to be maintained in confidence such that no participant  j ip   or external party gains any 

knowledge of  ix . Hence, the objective is to preserve the confidentiality of each participant’s values 

while being able to guarantee the exactness of the calculation.  

In this scenario, the trusted third-party T collects all the values  :1...i nx from the various participants

 :1...i np
 and returns the calculation. This design works only in an idealised world where we can 

implicitly trust T. Where there is any possibility that T could either be malicious, rogue or compromised, 
the use of a trusted third party becomes less viable. This scenario mirrors existing elections where the 
participants are the voters, and the trusted third party is played by government. 

It has been proven [Bar-Ilan, 1989] that any value that can be computed in a secure manner using a 
trusted third-party may also be calculated without a trusted party while maintaining the security of the 
individual secrets  ix . The protocols presented in this paper are secure against private computation and 

provide secure computation even where a non-threshold group of compromise participants can 
collaborate. 

Simple multiplication 
Where we have two secret values, x and y that a distributed among n participants  :1...i np , it is possible 

to compute the product xy while simultaneously maintaining the secrecy of both input variables x and 

y as well as ensuring that the individual secrets  :1...i nx and  :1...i ny are maintained by participant  ip

retaining the confidentiality. 

In this scheme, x and y are each shared between a threshold group of participants using a polynomial 
of degree (k-1). Each participant  ip can multiply their share of  :1...i nx on a polynomial of degree (k-1) 

of x and  :1...i ny in a polynomial of degree (k-1) on y.  

Introducing Algorithm 2, returns the participant  ip share of  iz , a polynomial of degree (2k-1). With 

this value, each participant  ip calculates the value      i i ix y z . 

The return value for      i i ix y z represents a valid share of the calculation for .x y  on a polynomial of 

degree (2k-1). Any participant or a coordinator acting for the threshold number of shares can use the 
return value held by each participant to calculate the true value of .x y  without obtaining any knowledge 

of the individual shares. 

Simple addition 
Where we have two secret values, x and y that are distributed among n participants  :1...i np , it is possible 

to compute the product x y while simultaneously maintaining the secrecy of both input variables x 

and y as well as ensuring that the individual secrets  :1...i nx and  :1...i ny that are maintained by participant

 ip retain the confidentiality. 

As per the process for simple multiplication, each participant  ip calculates the value      i i ix y z  . 

The calculation of  iz is not necessary, but adds a further level of randomness and confidentiality to 

the process.  
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The return value for      i i ix y z  represents a valid share of the calculation for x y  on a 

polynomial of degree (2k-1). Any participant or a coordinator acting for the threshold number of shares 
can use the return value held by each participant to calculate the true value of x y  without obtaining 

any knowledge of the individual shares. 

If the participants are less hostile, this can be simplified as an    i ix y addition without the additional 

step. 

Inverse or reciprocal  
For a distributed secret value, modx n which is distributed confidentially between j participants as 

 :1...i jx , it is possible to generate shares of the polynomial associated with the value for
1 modx n

while 

not revealing any information that could disclose the values  ix , x  or 1x  [Gennaro, 1996]. Again, 

each participant  ip maintains a share of the value x represented by  ix over a polynomial of degree (k-

1). 

Using Algorithm 1, each participant creates a share  ix of an unknown secret .x y on a polynomial of 

degree (k-1). Each participant then runs Algorithm 2 to calculate  1k  of a zero secret on a polynomial 

of degree (2k-1). Each participant  2 1k  performs the calculation to compute the value      i i ix y z

. 

Using the Interpolate() routine presented above, each participant can calculate the value of 

     i i iy zx   returning the value  from the collected values of i . Each participant can then 

calculate the value of 1 mod n . 

These values are sufficient such that any participant  ip can compute the associated share of 1
ix using

1
i i   one a polynomial of degree (2k-1). The Berlekamp-Welch decoding scheme [Berlekamp, 

1968] provides one of several methods that can be used to complete this process. 

Assignment 

The ability to sign a transaction in a verifiable and provable manner provides the opportunity to prove 
ownership privately and even relinquish or exchange ownership of the bitcoin private key and 
associated bitcoin address without publicly moving anything on the Blockchain. In this manner, a 
bitcoin address can be funded, and the contents of that address may be transferred or sold without 
leaving a public record. As this process is a threshold system, the assignment of key slices can be 
achieved securely without further settlement recorded on the Blockchain. 

In this way, we can separate the ownership of a note already settled on the Blockchain from the process 
of transacting that note. 

CLTV 

A bitcoin message or in more common parlance, transaction, can be created with the inclusion of a 
CLTV [BIP 65] entry. With this addition, the transaction can be made recoverable even in the 
catastrophic loss of all key slices or if multiple slices from an entity are deemed untrustworthy or lost 
in a manner that does not allow for the secure reconstruction of a signature with a minimum threshold. 
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This is further possible were an entity is using a third-party service and desires to ensure that that service 
cannot hold or deny access to the keys. In constructing a bitcoin transaction with a time based fail safe, 
the user knows that a malicious third-party or a compromised exchange site or bank cannot extort them 
for access to their keys. As a worst-case scenario, the compromise to a catastrophic level would lead to 
the time-based reversal of a transaction to a predefined address based on a CLTV condition. This 
predefined address can be created using the protocols noted within this paper. As such, it is possible to 
construct a series of transactions and keys that cannot be readily compromised. 

VI.  Security considerations 

Benger et. al. (2014) offered one example of ECDSA private key recovery using a Flash and reload 
methodology. This occurrence is but one example of attacks against system RAM and Cache. These 
methods leave the use of procedures such as that of Shamir's SSS [1979] wanting as they reconstruct 
the private key. Moreover, in any scenario with a private key is reconstructed that any amount of time 
a requirement for trust is introduced. It is necessary in this scenario to rely on the systems and processes 
of the entity holding the private key. 

Even if the trusted party is not malicious, there is a necessity to rely on their processes. As we have 
seen from many recent compromises, this reliance on reconstructing the private key leaves avenues of 
attack. 

As both a drop-in replacement for the existing ECDSA implementations as well as being completely 
transparent and compatible with the current bitcoin protocol, no hard fork or soft fork is required for its 
implementation, and the implementation is indistinguishable from any current transaction. Our 
application can treat individuals as separate participants allowing for the group signing of keys with a 
recovery function. As an example, a two of two scheme can be implemented using four key slices where 
the online wallet provider or exchange maintains two key slices and the end user maintains two slices. 
The exchange and the user would each have a two of two process over their key slices which would 
then be used in conjunction with each other for the secure signing of a message when required. 

VII.Future Work 

This paper will be extended to allow for the automated group allocation of shares to patent number 
15087315 format hierarchical wallets [Wright, 2016]. This previous group calculation will be extended 
from simple signing into a hierarchical group structure allowing for the automated creation of change 
addresses and hierarchical sub-keys that are associated with an initial shared secret group. 

Additionally, it will be possible to incorporate key reconstruction within a bitcoin message and 
transaction. This system would allow the creation of a P2SH address associated directly with a standard 
single address transaction. The merging of these forms of transactions will open many opportunities for 
smart contracts. 

The full ramifications of this paper will be extended in a series of daughter papers. In these, we will 
introduce a fully distributed ecosystem that can coexist within the Bitcoin Blockchain as a fully 
distributed allocation system based on blind signatures that extends the work of Chaum [1983] in 
creating a fully distributed model of what was sought with digi-cash. 

A further paper will introduce a series of multi-party computations allowing bitcoin to act as a black 
box computational algorithm. The use of zero-knowledge proofs for programming when coupled with 
our group distributed share system allows for a flexible design of computational systems and smart 
contracts that can be stored in the Blockchain while also being run without knowledge of other parties. 

The final edition will be the extension into a dynamic threshold group management structure for 
ewallets and calculational entities. This will allow for the secure addition and removal of parties 
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involved in the sharing and distribution of keys in a manner that provides external group allocations 
without the need to enact settlement on the Bitcoin Blockchain. 

VIII.Conclusions 

The scheme forms the foundation of what bitcoin sought to achieve with the introduction of a group 
signature process. The addition of a fault tolerable signing system with the coupling of a distributed 
key creation system removes all centralisation and trust requirements. Many systems will evolve with 
the need for trust. The removal of the need to trust the underlying infrastructure and powers these 
enabling them to differentiate themselves based on their real merits. 

Moreover, the introduction of an implicitly decentralised system allows for the creation of more robust 
and resilient protocols. The compatibility between ECDSA [Johnson, 2001] and Shamir's SSS [Shamir, 
1979] has allowed us to introduce a system that extends bitcoin with a new verifiable secret sharing 
scheme. This system is far more efficient than anything derived by Feldman [Feldman, 1987] or 
Pedersen [Pedersen, 1992] while losing nothing in security. 

In this paper, we have presented a system that extends the functionality of bitcoin without the 
requirement for a change in the base protocol. Using our system; 

1. a trusted third-party is no longer required for the selection or distribution of a key secret, 
2. a distributed banking exchange system can be created that does not rely on third-party trust, 
3. each member or group of members may independently verify that the share of the secret key 

that is held corresponds to the bitcoin address and public key advertised, 
4. a protocol exists to refresh the private key slices to mitigate the effects of eavesdropping and 

related attacks, and 
5. no trusted third-party is required for the group signing of transactions and messages. 

As our system prevents sensitive data from ever appearing in memory, we have completely solved many 
extant security risks. 
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X.Appendix 

To Compute  , ,i nExp Interpolate w w   
  

 Exp Interpolate      → * 

If  , }( 2 ), 1{ i n nw w t  is a set of values, such that at most,  t  are null and the remaining 

are of the form  iG a  , where the ia ’s lie on some  ( 1)k  Degree Polynomial   H   , then 

 G H     .  This is computed using: 

i v i iw     

     ( ( ))i v iG H i        
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where  is a  k  subset of the correct  iw ’s and  i ’s are the corresponding Lagrange interpolation 

coefficients. 
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