Live Capture Procedures

Author: Dr Craig S Wright GSE GSM LLM MStat

Abstract / Lead

This article takes the reader through the process of carving files from a hard drive. We explore the
various partition types and how to determine these (even on formatted disks), learn what the starting
sector of each partition is and also work through identifying the length the sector for each partition. In
this, we cover the last two bytes of the MBR and why they are important to the forensic analyst. This
process is one that will help the budding analyst or tester in gaining an understanding of drive
partitions and hence how they can recover and carve these from a damaged or formatted drive.

Introduction

This article takes the reader through the process of carving files from a hard drive. We explore the
various partition types and how to determine these (even on formatted disks), learn what the starting
sector of each partition is and also work through identifying the length the sector for each partition. In
this, we cover the last two bytes of the MBR and why they are important to the forensic analyst. This
process is one that will help the budding analyst or tester in gaining an understanding of drive
partitions and hence how they can recover and carve these from a damaged or formatted drive.

The format of this article is a step by step process that is designed to take the reader through the
analysis of a hard drive. Although the process may vary somewhat for each drive, the fundamentals
remain the same and following these steps will allow the analyst to recover drive partitions that have
been damaged or formatted even when the automated tools fail

The beginning

There are a number of commands we shall be using in this article that are fairly standard on most
Linux distro’s. In this artile, it is assumed that the analyst has already creates a bitwise image of the
hard disk drive to be examined using “dd” or a similar tool.

The commands we will start with to copy our MBR (master boot record):

e dd if=Image.dd of=MBR.img bs=512 count=1
e 1s -al *img
e khexedit MBR.img &

Here, we first extract the MBR from our image file (in this case IMG.dd) and extract the data to a file
called MBR.img. Note that we have extracted only the first 512 bytes and we can validate this image
file using the command “Is -al *img”.

Master Boot Record (MBR)

In a most drive formats (there are exceptions with some RISC systems etc) that we will analyse, each
Partition entry is always 16 bytes in length. More, the end of any MBR Marker is 0x55AA
(ALWAYS)!

1“ 0x01BE 446
an 0x01CE 462
3“’ 0x01DE 478
4”‘ OxO1EE 492

Table 1 The HDD table

We see from the file “MBR.img” the partition information displayed in table 1 and figure 1. The
offset for each of the partition locations remains the same. In this way we can easily determine where
the required partition data resides and hence extract and analyse it.

What are the partition types?

Each drive is divided into a number of partitions (these are the things we see in Windows as C:, D:
etc). These are defined in table 2 from the offset location defined in table 1.

Offset (Dec) Length Content
bytes

0 1 State of partition: 0x00 if active, 0x80 if not active

1 1 The head where the partition starts

2 2 The sector and cylinder where the partition is started
4 1 Type of partition (see table 3)

5 1 Head on which the partition ends

6 2 Sector and cylinder where the partition ends

8 4 Distance in sectors from the partition start table to the

st
starting sector (the 1 sector of the partition)

12 4 Number of sectors contained in the partition (Length of
the partition)

Table 2 The partition types

And the form of the partition (w it is formatted as and more) is set through the values displayed in
table 3. This is held in offset 4 qas detailed in table 2.

0X01 FAT 12

OXOE / 0X06 FAT 16

0X0C / 0X0B FAT 32

0X82 Linux Swap

0X83 Linux Native

0X05 Extended

0X07 NTFS

OXOF Microsoft Extended

Table 3 The partition types

As one of my students pointed out, you can find the partition types on Wiki...

e http://en.wikipedia.org/wiki/Master boot record
e http://en.wikipedia.org/wiki/Partition_type

The Partition Table

If we view the MBR in a hex editor (such as khexedit in Linux), we see the following partition values
in figure 1.

e Partition 1 8001010006 1F 7F 96 3F 00 00 00 E1 OC 00 00
e Partition 2 0000419705 1F BF 0B 20 85 0C 00 60 99 03 00

The offset values displayed in table 1 are important. These are always the same and allow us to
extract the partition information displayed in figure 1.

PB&GBBFF?Z GA 40 75 01 42 80 C7 02 E2 F7 F8 5E C3 EB 74 49 r.@u.B...... ~. e
000001106E 76 61 6C 69 64 20 70 61 72 74 69 74 69 6F 6E 20| nvalid partition

P999912174 61 62 6C 65 2E 20 53 65 74 75 70 20 63 61 6E 6E table. Setup cann
00000132)6F 74 26 63 6F 6E 74 69 6E 75 65 2E 00 45 72 72 6F ot continue..Erro
P999814372 20 6C 6F 61 64 69 6E 67 20 6F 70 65 72 61 74 69 r loading operati
P99901546E 67 20 73 79 73 74 65 6D 2E 20 53 65 74 75 70 20| ng system. Setup

0000016563 61 6E 6E 6F 74 20 63 6F 6E 74 69 6E 75 65 2E 00| cannot continue..
iBBBGBl?G@@ 00 00 00 00 OO 00 00 00 00 00 00 00 8B FC 1E 57cuiuun.. W
iBBBBBlB?BB F5 CB 00 00 00 00 00 GO 00 00 00 GO 00 00 00 6Ocouo...
PBBBBIQS&@ 00 00 00 0O 00 00 0O GO 0O 00 00 0O 00 00 00 00ciiiuiuians
000001A900 00 00 00 OO 0O 00 00 OO GO 00 00 0O 00 00 00 00 |.........c.civuunn
000001BAGO 00 00 00 80 01 @1 00 06 1F 7F 96 3F 00 00 00 El‘- e
PBBBGICB 4 6C 00 00 00 41 97 05 1F BF 0B 20 85 0C 00 60 99 Sle
000001DCO3 00 00 00 0O OO 6O GO 0O 0O 00 60 00 00 0O 00 00

!GGBBBIED 0 00 00 00 00 00 0O 00 00 GO 0O 0O 0O 0O 00 00 00!

k==

000001FES5 AA |]
Signed 8 bit: |-86 | signed 32 bit: [170 | Hexadecimal: [AA |
Unsigned 8 bit: |170 B0~ GHex (MBR.img): . x Octal: 252 |

Signed 16 bit: (170 | 32 (a2 Binary: 110101010 |
Unsigned 16 bit: |170 64 Stream Length: |8 2]
- | ‘ OK | | Cancel i — 9 | L)

@ Show little endian decoding ——+ow unsigned and float as hexadecimal

Offset: 1FF; 41 bytes from 1BE to 1FF selected

Figure 1 The MBR in KHexedit

Notice that the end of the partition entry in figure 1 is set using the value Ox55AA. As stated, the
MBR Marker is always defined with the value Ox55AA.

Partition 1

We can extract the data for partition one (1) from the MBR (table 4).
0 1 2 3 4 5 6 7 8 9 A B C D E F

Table 4 Partition 1

The data in table 4 is highlighted in figure 3. This is why the set offsets are important. Given a set
offset and a defined byte length (table 1), we can always carve the partition information (such as
that displayed for the example drive in table 4) from the MBR.

Eile Edit View Windows Help &

0OPOOOFF 72 GA 40 75 01 42 80 C7 02 E2 F7 F8 53E C3 EB 74 49| r.@u.B...... ~outIe
000001106E 76 61 6C 69 64 20 70 61 72 74 69 74 69 6F 6E 20| nvalid partition

0000012174 61 62 6C 65 2E 20 53 65 74 75 70 20 63 61 6E 6E| table. Setup cann
000001326F 74 20 63 6F 6E 74 69 6E 75 65 2E 00 45 72 72 6F| ot continue..Erro
0000014372 20 6C 6F 61 64 69 6E 67 20 6F 70 65 72 61 74 69| r loading operati
000001546E 67 20 73 79 73 74 65 6D 2E 20 53 65 74 75 70 20| ng system. Setup

0000016563 61 6E 6E 6F 74 20 63 6F 6E 74 69 6E 75 65 2E 06| cannot continue..
0000017600 00 00 60 Q0 OO 0O 00 GO 00 60 00 00 8B FC 1E 57| W
00000187 8B F5 CB 00 00 00 0O 0O 00 00 00 0O 00 0O OO 00 OO0 |[......iovvverena
0000019800 GO 00 60 OO0 0O 0O 00 0O 00 60 00 00 88 B0 00 08|
000OO1A%00 GO 00 60 OO0 0O 0O 00 0O 00 60 00 00 88 B0 00 08|
000001BAGO GO 00 60 80 01 61 OO 06 1F 7F 96 3F 60 00 00 E1] |............ Hacoo
0OOOO1CB/B4 OC 0f 00 00 41 97 65 1F BF 0B 20 85 0C 6O 60 99 ..D..A cee
000001DCE3 GO 00 60 00 OO 0O 0O 0O 00 60 00 00 60 B0 00 06
000001EDGO 0O 00 60 Q0 OO 0O 00 GO 00 60 00 00 60 00 00 06
000001FES5 AA u. el

Figure 2 The MBR in KHexedit

Now, if we take the descriptions listed in table 2, we can extend our description of partition 1 with a
list of the data displayed in table 5.

Iiillliill‘liillIiiIIIiiII‘IiillIiill|ii|||iIII\IiiII|ii|||ii||Iiillliillliiilliill
0 1 2 4 5 6 8

C(or12)

) wn — wn %) Re
& ® ® =< ol o o 9 g 2
& o ° o} a © =
—+ Q — Q — —+ —+ ~ 3
(0] o o ® o o o o =
(@] E = (@] E = = o} . T
= Y -+ Q — 0O o o
> > &+ O =
o) o > E o > > . =~ 0
Q = Q. b = Q. o > —h
= ® o) =, ® o - w n
= O = & g« = 5 @ 3
o) = o Si n 2
S 3 o =i e a ® 3 5}
| = o I = o) 3 3 a3
o > o 3 = S o
o S s < (= s = o
x o > o =3 > o) =}
0) (o)} o 0] - 3 o
o (a =)) md]
o, o I) > et 5
1 o) o > =3
> — m = o) D
> » S5 > 3 > ho] o
o} n ™ = o ™ o T —
e = = Q =1
< o © on) o [=
0) x (] Q = [
o 3 = o = =
= =t — =))
=p = = > ©
o e %)
=] S) 3
w0 (1) Q =
—t S = [y
3] G o
= Q —+
—+ (%] Q) =)
v o =
o 1)
— S
8 Q)
5." >
™ =%
4 o
Y| >
3 [¢°]
=
0Q

Table 5 Partition 1 with definitions

The data in the table is displayed in “little endian” format in Intel systems (and those such as AMD
following this standard). This means that the byte order is displayed in reverse (table 6).

mmmmnmnmmmmmm

0 C(or12)
a 0X0001 % 0X0000003F =63 0X000C84E1 =
g' o Sectors 820,449
Little endian =
backwards
Table 6 Partition 1
The 3 key areas for forensics in the MBR include:
1 The partition type (offset 4)
2 The logical starting point for the partition as an offset in sectors (offset 8)
3 The length of the partition in sectors (offset 12)

So you can see that the data contained within this small section of the hard drive expands to provide
a good deal of encoded information detailing and describing the drives features.

If we look at table 6, we see section 8 which we have expanded and calculated to determine the
number of sectors used by the partition.

. Sector Distance . Number of Sectors

0X0000003F =63 0X000C84E1

Table 7

Looking at the partition information that we extracted for partition 1 we can see at offset 4 the value
of the drive format type defined for this device (table 8). Here the value 0x06 can be matched to table
3 and we see that the partition has a FAT 16 format type.

80 |01 01 |00 06 |1F | 7F |96 |3F |00 |00 |00 |E1 84 |0C |00
0 1 2 4 5 6 8 C

The Partition type is 0X06 (or FAT 16)

OXOE / 0X06 FAT 16

Table 8 The drive type

In table 9 we see how the partition length and and starting position are defined.

mmmmﬂmmmmm

0 C(or12)
E 0X0001 % 0X0000003F =63 0X000C84E1 =
< o Sectors 820,449

Little endian =
backwards

The logical starting
point for the partition
as an offset in sectors

- Sector Distance - Number of Sectors

0X0000003F = 63 0X000C84E1 = 820,449

The length of the
partitionin sectors

Table 9 The size and location of the drive

First, the partition starts 0x3F (or decimal 63) sectors into the drive. The value at sector 8 is
0x3F000000. This value is stored in little endian format and as such is written in reverse order.

Sector C (12 decimal) can be seen to contain the value 0x000C84E1 with provides us with the length
of the partition (in decimal 820,449) in sectors.

mmmmﬂmmmmm

0 C (or 12)
E 0X0001 % 0X0000003F =63 0OX000C84E1 =
< o Sectors 820,449

Little endian =

backwards

Offset zero tells us if the partition is bootable or active or not
LILO or GRAB can ignore this flag and boot anyway

- Sector Distance - Type of Partition

0X80 = Active 4 0X06 = FAT16

Table 10 The State of Partition = 0X80 = Active

The value at section 0 on the partition data in our first partition is 0x80. This value flags the partition
as being active and as such can be used as a boot device.

mmmmnmmmmm

0 C(or12)
E 0X0001 g 0X0000003F =63 OX000C84E1 =
< o Sectors 820,449

Little endian =
backwards

Offset 4 has a value of 0X06
This corresponds to FAT 16

So the type of partitionis FAT 16

- Sector Distance - Type of Partition

0X80 = Active 4 0X06 = FAT16

Table 11 State of Partition = 0X80 = Active

Taken together, sections 0 and 4 (table 11) allow us to determine that the first partition is a FAT 16
format drive primary boot partition.

Verification - MMLS

We can check our results using the command “mmls”. For what we are doing, we are not using this
command for the exercise, just as a check.

Units are in 512-byte sectors

00:
0l:
02:
03:
04:
05:
Oe:
07:
08:
09:
10:

S5lot
Meta

Start

0000000000
0000000000
0000000063
0000820512
0000820512
0000820512
0000820575
0001026144
0001026144
0001026144
0001026207

End

0000000000
0000000062
0000820511
0001056383
0000820512
0000820574
0001026143
0001056383
0001026144
00010262086
0001056383

Figure 3 MMLS can validate the results

Length

0000000001
0000000063
0000820449
0000235872
0000000001
0000000063
0000205569
0000030240
0000000001
0000000063
0000030177

Description
Primary Table (#0)
Unallocated

DOS FAT16 (0x06)
DOS Extended (0x05)
Extended Table (#1)
Unallocated

DOS FATle (0x0e€)
DOS Extended (0x05)
Extended Table (#2)
Unallocated

DOS FAT12 (0x01)

For the most part, “mmls” will do all of the steps we have completed so far and more. Then reason for
doing this exercise manually is twofold:

Sometimes the automated tools will fail. Commands such as “mmls” work well most of
the time, but do fail in situations where we really need to obtain the data.
The use of a manual process teaches far more than running a tool ever can.

In using the tool to validate our checks we can see if we have made any foolish errors, but at the same
time learn more about the system and how it is designed.

The highlighted data in figure 3 (on line 02) shows us that our calculations are correct. This shows the
partition as a DOS FAT 16 partition as we have manually calculated.

What is the starting sector of each partition?

In the hex editor, you have found the 1st and 2nd primary partitions located at offsets 446 and 462
respectively (figure 2). We know this as the partitions are always set at a predefined location. The hex
editor here displays the 3rd and 4th partitions are all 0’s as they are unused.

Each partition entry is 16 bytes long. This is always the case. When we have extended partitions,
these are similarly defined at later locations in the drive. We will cover this in a follow up article to
this one.

As the values defined are all zero’s, we can see that the 3rd and 4th partitions are empty and do not
exist. There are extended partitions (defined within Partition 2) contained in this drive that we will
continue the analysis on next article (table 13).

Back to Partition 1

80 Jo1Jor ool aFd7else] |]] | | |
0 1 2 4 5 6 8 C

- Length of Partition Partition Type

0X0000003F =63 0X003FFA86 = 820,449 0X06 = FAT16

Table 12 back to partition 1

If we extract the 16 bytes beginning at offset 446, we can examine the three sections we need. The 4-
byte fields are stored in little endian order or backwards (table 12). From this we determine that the
initial partition begins 63 sectors into the drive image.

Again, the length of the image is 0X003FFA86 which calculates to 820,449 sectors and the Partition
type is 0X06 (or FAT 16).

Partition 2

In the examples above, we looked at Partitions 1 and 2. Notice there are more partitions. We will
cover extended partitions shortly.

mm-mm--------

C(or 12)
- Length of Partition Partition Type
0X0000003F =63 0X003FFA86 = 820,449 0X06 = FAT16

#2 0X000C8520 = 820,512 0X00039960 = 235,872 0X05 = Extended

Table 13 Partition 2

If we extract the 16 bytes beginning at offset 462 this time, we can examine the three sections we
need. As always, the 4-byte fields are stored in little endian order or backwards.

From this (figure 13) we see the initial partition begins 820,512 sectors into the drive image. Next, we
can see that the length of the image is 0X00039960 which calculates to 235,872 sectors.

Now, partition 2 has a value for the Partition type of 0X05 (or Extended). We can guess that Linux
was installed first as a Microsoft Extended Partition would have been stored using the value 0XOF.

Doing this, we have identified the first two partitions. Now we need to go to the extended partition
and find the others that are contained later in the drive. Doing this, we will find another 512 byte
section stored later in the drive which we can analyse in the same manner. This we will leave to the
follow-up article.

What are the last two bytes of the MBR?

This question is simple. The final 2-bytes of the MBR are always 0X55AA (figure 4).

File Edit Yiew Windows Help

00000OFF72 BA 40 75 01 42 80 C7 02 E2 F7 F8 5E (3 EB 74 49 r.@u.B...... A . tI]-
000001106E 76 61 6C 69 64 20 70 61 72 74 69 74 69 6F 6E 20 nvalid partition
0000012174 61 62 6C 65 2E 20 53 65 74 75 70 20 63 61 6E 6E table. Setup cann
000001326F 74 20 63 6F 6E 74 69 6E 75 65 2E 00 45 72 72 6F ot continue. T guol
0000014372 20 6C 6F 61 64 69 6E 67 20 6F 70 65 72 61 74 69 r loading op
000001546E 67 20 73 79 73 74 65 6D 2E 20 53 65 74 75 70 20 ng system. S¢l%52
9999916#63 61 6E 6E 6F 74 20 63 6F 6E 74 69 6E 75 65 2E 00 cannot contif [-
0000017600 00 60 60 60 60 60 00 00 00 00 00 00 8B FC 1E 57
0000018788 F5 CB 00 00 00 00 60 00 60 00 60 00 00 00 00 00 |.................
00000198600 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000001A900 00 60 00 00 00 00 60 00 00 00 00 00 00 00 00 00
eeeee1a@ee 00 00 00 80 01 01 00 06 1F 7F 96 3F 00 00 60 E1 i
000001CB84 6C 00 00 00 41 97 65 1F BF 0B 20 85 06C 00 60 99 A..... B
0000010C03 08 00 00 00 00 60 00 00 00 00 00 00 00 00 00 00 .Ll...............

000001EDQO _Of 00 00 00 00 00 00 60 00 60 00 00 00 00 00 iuunn

Figure 4 The MBR ends at 0x55AA

This fact allows us to find extended partitions throughout the drive. We can seek the value 0x55AA
and look to see if other partition information exists on the drive. We will do this in the next article
when we examine the extended partitions.

To conclude...

In a follow-up article to this one, we will continue into the Extended Partitions. In this process we will
take what we have learnt of extracting the data from the MBR and now how we can find the other
partitions. More, we will extend this into actually carving the partitions and when we have a good idea
of just how we can find and calculate the partitions (including formatted ones), we will extend this
process to recovering lost data.

Author's bio
About the Author:

Dr Craig Wright (Twitter: Dr_Craig Wright) is a lecturer and researcher at Charles Sturt
University and executive vice —president (strategy) of CSCSS (Centre for Strategic
Cyberspace+ Security Science) with a focus on collaborating government bodies in securing
cyber systems. With over 20 years of IT related experience, he is a sought-after public
speaker both locally and internationally, training Australian and international government
departments in Cyber Warfare and Cyber Defence, while also presenting his latest research
findings at academic conferences.

In addition to his security engagements Craig continues to author IT security related articles
and books. Dr Wright holds the following industry certifications, GSE, CISSP, CISA, CISM,
CCE, GCFA, GLEG, GREM and GSPA. He has numerous degrees in various fields including

a Master’s degree in Statistics, and a Master’s Degree in Law specialising in International
Commercial Law. Craig is working on his second doctorate, a PhD on the Quantification of
Information Systems Risk.

	Abstract / Lead
	Introduction
	The beginning
	Master Boot Record (MBR)
	What are the partition types?
	The Partition Table
	Partition 1

	Verification - MMLS

	What is the starting sector of each partition?
	Back to Partition 1
	Partition 2
	What are the last two bytes of the MBR?

	To conclude…
	Author's bio

