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Abstract. Combining hazard models with SIR (Susceptible-Infected-Removed) 

epidemic modeling provides a means of calculating the optimal information 

systems audit strategy. Treating audit as a sequential test allows for the 

introduction of censoring techniques that enable the estimation of benefits from 

divergent audit strategies. This process can be used to gauge the economic 

benefits of these strategies in the selection of an optimal audit process designed 

to maximize the detection of compromised or malware infected hosts. 
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1   Introduction 

Computer systems are modeled through periodic audit and monitoring activities. This 

complicates the standard failure and hazard models that are commonly deployed [11]. 

A system that is found to have been compromised by an attacker, infected by malware 

or simply suffering a critical but unexploited vulnerability generally leads to early 

intervention. This intervention ranges from system patching or reconfiguration to 

complete rebuilds and decommissioning.  

Audits and reviews of computer systems usually follow a prescribed schedule in 

chronological time. This may be quarterly, annually or to any other set timeframe. 

Further, periodic reviews and analysis of systems in the form of operational 

maintenance activities also provide for a potential intervention and discovery of a 

potential system failure or existing compromise. 

Using a combination of industry and organizational recurrence rates that are 

stipulated from a preceding failure and covariate history as derived from the 

individual organization introduces a rational foundation in modeling current event 

data. By denoting the number of incidents1 within the organization as  N t  by 

                                                           
1 An incident as defined for the purposes of this paper is an event leading to the failure of the 

system. This can include a system compromise from an attacker or an infection process of 

malware (such as a scanning worm). 
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follow-up time t and  N t as the corresponding observed incidents in (0, ]t  with 

regards to absolute continuous event times, the hazard or intensity process  t  for 

the intervention time t using the covariate data  X t can be expressed as: 

        1 ,0 ,t P dN t N u u t X t             (1) 

Taking the assumption that the administrative and audit staff are not the direct 

cause of an incident, a point process  1 2 3, , ,...T T T will usually be observed for the 

system2 being examined. Due to censoring through the audit process,  N t can be 

greater then  N t . Equation (9.1) has an assumption that only a single incident has 

occurred, that is, N increments by units. Live systems can and do experience 

multiple incidents and compromises between detection events. Hence it is also 

necessary to model the mean increments in N over time 

        | ,0 ,d t E N t N u u t X t         (2) 

with the cumulative intensity process  . 

In the case of a continuous-time process with unit jumps, expressions (1) and (2) 

can be expressed as 

    
0

t

t u du   .      (3) 

Independent censorship requires that C t  [15].  This assumption of 

independent censorship allows the preceding covariate histories to be incorporated 

into the model. If we define    1 0Y t t C   , it is now necessary that 

            | , ;0 ,E dN t N u Y u u t X t Y t t       (4) 

for all times ( t C ) prior to the audit or review. 

2 NHPP, Non-homogeneous Poisson Process 

Poison processes have been used to model software [11] and systems failures [16], 

but these models are too simplistic and it is necessary to vary the intensity (rate) based 

on historical and other data in order to create accurate risk models for computer 

systems. The non-homogeneous Poisson process (NHPP) can be used to model a 

Poisson process with a variable intensity. In the special case when  t takes a 

                                                           
2 A system is defined by an isolated and interactive grouping of computers and processes. This 

could be a collection of client and server hosts located at a specific location isolated by a 

common firewall. 
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constant value , the NHPP is reduced to a homogeneous Poisson process with 

intensity  t  . 

In the heterogeneous case, an NHPP with intensity  t , the increment, 

,0t uN N u t   has a Poisson distribution with an intensity 

of    
t

u
t x dx   . Hence the distribution function of the incident discovery can 

be expressed as: 

 

 

 

  
  0

1 0

1 exp

1 exp

u u t t

u t

u

t

P N N

x dx

u v dv









    

  

   





    (5) 

The NHPP format is better suited to information systems risk modeling then is the 

homogeneous Poisson Process as it can incorporate changes that occur over time 

across the industry. 

This can also be modeled as the Poisson process with parameter  , 

  , 0tN t


 , is the unique (in law) increasing right continuous process with 

independent time homogeneous increments. Each 
 

0, tt N


 has a Poisson 

distribution with rate t . The process 
  , 0tX t


 is also stationary with 

independent time increments. 

With 0 0t  and  1,...,
n

nt t  , 1 2 ... nt t t   the r.v.'s 

            
1 2 1 1

, ,...,
n nt t t t tX X X X X

    



  
 

are independent and for 

each
    

1
1,..., ,

n nt tk n X X
 


  has the same distribution as 

  
1k kt tX



 .  

The characteristic function of 
  

1

1
k kt tX


 
can be computed for any m  as: 

 

        

   
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  



  

  

 

             



   
       
     

   

   
  
     





 (6) 
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as   the expression converges to  
2

1
2

m
k kExp t t




 
 

 
, which is the 

characteristic function of a Gaussian variable with variance  2

1k kt t   . 

3 Recurrent Events 

In many cases, audit and review processes are limited in scope and may not form a 

complete report of the historical processes that have occurred on a system. The audit 

samples selected systems and does not check neighboring systems unless a failure is 

discovered early in the testing. In these instances, the primary interest resides in 

selected marginalized intensities that condition only on selected parts of the preceding 

histories. Some marginal intensity rates drop the preceding incident history all 

together 

      |md t E dN t X t          (7) 

A common condition for the identification of m is that 

           | ;0 , mE dN t Y u u t X t T t d t      .  (8) 

For (6) to be valid, censoring intensity cannot depend on the preceding incident 

history for the system  ;0N u u t    . The process of randomly selecting 

systems to audit makes it unlikely that particularly problematic systems will be re-

audited on all occasions. This would include the exclusion of targeting client systems 

that have been compromised several times in the past or which have suffered more 

than one incident in recent history. The result is that covariates that are functions of 

 ;0N u u t   will also have to be excluded from the conditioning event. Here 

        | | ,E dN u X u E dN u X t        .t u   

 (7) 

When this occurs 

 

       

   

 

0

0

| |

|

t

t

m

E dN u X u E dN u X t

E dN u X u

t

      

   

 



   (9)

  

 m t models the expected number of incidents that have occurred in the system 

over  0, t as a function of  X t . 
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4 Cox Intensity Models 

Using a Cox-type model 

       '
0

Z t
d t d t e

     ,     (10) 

with      1' ,..., pZ t Z t Z t    having been created using functions of 

 X t and  ;0N u u t    , inference differs little to univariate failure time 

data. The log-partial likelihood function, score statistic and the integral notation for 

the information matrix may be written respectively as 

             0

0
1

log ' log ,
n

i i

i

L Z t S t dN t   




    
   

 
 (9) 

  
 

      
0

1

,
n

i i

i

U Z t t dN t


  






    
  

    

 (10) 

and 

  
 

    
2

0
1

,
'

n

i

i

I V t dN t


 
 





   
   

     

 (11) 

where,   

 

         

 
   
   

'

1
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,

,
,

,

i

n
jj Z t
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S t
t

S t





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










 

and 

  
 

 
 

2
2

0

,
, , .

,

S t
V t t

S t


  




      (11) 

By defining  Z t in terms of fixed or external time varying covariates, (10) can 

be further defined by adding additional elements 

   1 21 1 1 2 ...N t N t        
     to   'Z t  . This would allow the 

intensity to be altered by a multiplicative factor 
je


following the j

th
 incident on an 

individual system when compared against another system without any incidents at the 

same point in time. 
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5 SIR (Susceptible-Infected-Removed) epidemic modeling of 

incidents during Audit 

Allowing that a compromised or infected system remains infected for a random 

amount of time , the discovery of an incident by an auditor will be dependent on a 

combination of the extent of the sample tested during the audit3 and the rate at which 

the incident impacts individual hosts. When a host in a system is infected, any 

neighboring hosts are attacked and infected at a rate r. The sample size selected in the 

audit is set as  and the total number of hosts in the system being audited is defined 

by  were  . The time between audits (the censor time) is defined by C. 

If C  , an infected or compromised system will be undiscovered and attacking 

other hosts within the system when the audit occurs. At the end of the time , the 

system is removed as it is either 'dead' - that is decommissioned and reinstalled or it 

has been patched against the security vulnerability. 

A NSW [17] random graph is obtained by investigating the neighboring systems in 

the SIR model. From this, the thresholds can be computed. 

5.1 Calculations with a constant . 

First, we shall consider the case where  is a constant value, and without loss of 

generality scale time to make a constant. Start with letting kp
be the degree of 

distribution.  

Starting with a single infected host in a system, we can compute the probability 

that j of k neighboring hosts will be infected is given by: 

 

   ˆ 1
j k j rr

j k

k j

k
p p e e

j


 



 
  

 


    (12) 

Setting 


is the mean of p then the mean of 
p̂

is 
 ˆ 1 re   

 

With the network constructed as an NSW random graph, systems that are 

compromised in the first and subsequent iterations will each have k neighbors. The 

value k includes subsequently compromised machines and the host that compromised 

the existing system. The probability associated with these neighboring hosts is give 

by: 

 

  11
0

k

k

k p
q k




  

     (13) 

This allows us to calculate the probability that j neighboring hosts also become 

infected: 

                                                           
3 We shall assume that the audit is effective and will uncover an incident if an infected host is 

reviewed. 
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   ˆ 1
j k j rr

j k

k j

k
q q e e

j


 



 
  

 


.    (14) 

Setting  to represent the mean of q, we get the mean of 
q̂

, 

 
 ˆ 1 re   

. 

From this we see that for the attack or malware to propagate and infect other 

systems, we have to have; 

 
 1 re 

.       (15) 

Using this, we can calculate the probability that a particular attack or type of 

malware resulting in an outbreak (such as
4
 []). Setting 1 rT e  []

5
 we get: 

 

   

   

  

0

0 0

0 0

0

ˆ 1

1

1 .

k jj j

k

k j

j k j

k

k j

k
G z p T T z

j

k
p Tz T

j

G Tz T

 


 

 


 

 
  

 

 
  

 

  



 

   (16) 

Similarly, we can prove that 
    1 1

ˆ 1G z G Tz T  
. 

As such, we can state that the probability that an incident behaves as an epidemic is 

 0
ˆ1 G 

 where 
 1Ĝ  

is the smallest fixed point in 
 0,1

. 

5.2 Calculations with a variable . 

Next we consider the effects of a variable or random value of  . This is the 

probability that a compromised system causes a compromise in its neighboring 

system is: 

 
 

0
1 rtT dtP t e


  

.     (17) 

Again, T is the transmissibility factor. 

Newman [17] asserted that the infection of neighbors was independent. This does 

not hold as valid for malware, but it gives a good approximation. Interactions in 

systems and the ability of software to rescan the same systems carry a degree of 

dependence. Here the time to compromise may be modeled exponentially with 

mean , such that
( ) tP t e   

. 

                                                           
4  http://www.securecomputing.net.au/News/81027,google-warns-of-web-malware-

epidemic.aspx 
5 Newman NSW 

Electronic copy available at: https://ssrn.com/abstract=3442169



From this we can see that the probability of a host not being compromised is, 

 

 

 

0 0
1

1

r tt rtT e e dt e dt

r





      




 

.    (18) 

Likewise, the probability that n hosts in a system are not compromised is, 

 

 

 

0 0
1

1

nr tt nrtT e e dt e dt

nr





      




 

    (19) 

For cases where  is not constant, Jensen’s inequality [6] implies that for 

neighboring hosts, the probability of escaping compromise is positively correlated as  

 
   

n
nrt rtE e Ee 

.       (20) 

We can compute the expected number of systems that will be compromised by 

substituting kr for kp
and kq

which gives us, 

       ( )

0
0 0

ˆ 1 1
j

j rt r k j t

k

j j

k
G z P dt z r e e

j


 
  

 

 
   

 
   (21) 

if 0 1 1r r 
, G is strictly convex as ˆ T  , 

  1 1i iG G z T  
.  

6 Applications to audit and review 

The first case where C   has a host in the system being discovered as having been 

infected or compromised before the audit. Here, the rate of infection r determines the 

chance of other systems being uncovered during an audit. If the time between audits 

exceeds the time to compromise the first host is insufficient for the incident to spread 

(i.e.  ,C C r   ), then only the initial host will have been compromised and this 

will be known prior to the audit. 

If C  a compromised host in the system will be undiscovered and attacking 

other hosts within the system when the audit occurs. At the end of the time , the 

system is found. As such, if  C c    (where c is the average time taken to 

conduct an audit), a compromised host is discovered during the audit through a 

process independent of the audit. 

The alternative scenario and that which is of most interest is where  C c   . 

In this case, the incident will not be discovered independent of the audit. In this 

instance, we can calculate the probability that an auditor will discover a compromised 

system during the audit process. In this instance we have a time limited network 
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function which is coupled with a discovery process that is formulated using the 

Bayesian prior. That is we can calculate the probability that all systems are not 

compromised given a selected audit strategy that finds that none of the audited hosts 

have been compromised.  

6.1 False Negatives in an Audit 

False negatives result in an audit where an incorrectly reported result is supplied 

noting the organization as safe when it is not (i.e. no compromise was detected where 

hosts have been compromised). If we let A represent the condition where the 

organization has been compromised and let B represent the positive evidence of a 

compromise being reported 

  
   

       
|

|
| |

P B A P A
P A B

P B A P A P B A P A



   (22) 

Here we can model the actual rate of compromise in the system,  P A . Given a 

network compromise model (21) we can substitute the censored time 

       ( )

0
0 0

ˆ 1
C j

j rt r k j t

k

j j

k
G z P C dt z r e e

j


 
  

 

 
   

 
  (23) 

From this we can see that the probability of a host not being compromised in the 

censor time is, 

   
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 

 

 
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1
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C
r t r C

r C

P A T e e dt e dt

e e

r r r

e

r



 



  



  

   

 

   

  
    






 

 

(24) 

Equation (24) also derives the probability of any single host being compromised 

between the audits 

  
 

 
1

1
r C

e
P A

r





 


 


.     (25) 

Depending on whether  is constant or varies; we can calculate the expected 

number of hosts that will be compromised in the period between audits as a fixed or 

variable function. In either event, each calculation is an exercise in Bayesian 

estimation of the type where a random sample is selected and the defects or failures 

are analyzed 

   x n x
n

f x p q
x

 
  
 

.      (26) 
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This binomial distribution is simplified in the case of a false negative (no failures 

or x=0 from a sample of n hosts) 

  
0

x n x x n x
n

f x p q p q  
  
 

.     (27) 

Based on the types of systems, the audit periods can be selected to create an 

economically optimal choice. In this, using an equation that calculates the expected 

number of compromised or infected hosts within a censor time we can select either a 

fixed audit schedule, C = Constant, or vary C over the course of the system life in 

order to maximize the detection, C=C(t).   

In conducting this exercise, the cost of the audit, and differences that occur would 

also need to be modeled. The required effort for an audit of 10 hosts in a 1 month 

period is not necessarily linearly related to the audit of 60 hosts in a 6 month period. 

In each case, the individual constraints faced by the selected organization also need to 

be incorporated. 

Conclusion 

These equations allow organizations to compare the deployed audit strategies against 

both their own historical data and that of third parties. In this manner, strategy can be 

formulated in order to optimize audits and system reviews in a manner that detects an 

incident in the most economical manner. 

Modeling the failure rate of systems and the propagation rate of an attack, allows 

us to calculate an expected number of hosts that are anticipated to have been 

compromised in the time between an audit given a specified survival function or 

threat. Past data and comparisons from similar systems (such as survival data from 

DShield6) allow for the modeling of alternative systems where a reported number of 

events have been reported against those deployed. 

Dependence, variation, randomness, and frailty add to the risk toolset of 

multivariate failure event analysis. Using frailty theory to model information system 

risk allows us to better predict risk and to more effectively allocate scarce resources 

through selecting the most economically viable targets to defend as well as choosing 

the optimal detection strategies. The properties of censoring-handling and frailty 

modeling have turned multivariate survival analysis into an exceptional tool for the 

determination of system risk. 

This paper has presented a number of methods that can be used to gauge the 

expected failure events in a system of computer hosts. 
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