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Abstract. For many years information security and risk management has been
an art rather than a science. This has resulted in the reliance on experts whose
methodologies and results can vary widely and which have led to the growth of
fear, uncertainty and doubt within the community. At the same time, the failure
to be able to effectively expend resources in securing systems has created a
misalignment of controls and a waste of scare resources with alternative uses.
This paper aims to introduce a number of models and methods that are common
in many other areas of systems engineering, but which are only just starting to
be used in the determination of information systems risk. This paper introduces
the idea of using neural networks of hazard data to reliably model and train risk
systems.
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1 Introduction

For many years information security and risk management has been an art rather than
a science. This has been detrimental to the economy as a whole as well as to the
operations of many organizations. The result has been a reliance on experts whose
methodologies and results can vary widely and which have led to the growth of fear,
uncertainty and doubt within the community. Although many true experts do exist
who exhibit an ingightful vision and ability, for each true expert, many inexperienced
technicians and auditors abound.

This failure to be able to effectively expend resources in securing systems has
created a misalignment of controls and a waste of scare resources with altemative
uses. This paper aims to introduce a number of models and methods that are common
in many other areas of systems engineering, but which are only just starting to be used
in the determination of information systems risk. These processes can help both the
mnexperienced security professional as well as adding to the arsenal of tools available
to the consummate expert.

Where possible, the standard systems reliability engineering terms have been used
in this paper. These formula and methods have been widely used in systems



engineering, medicine and numerous other scientific fields for many vyears. The
introduction of these methods into common use within risk and systems audit will
allow the creation of more scientific processes that are repeatable and do not rely on
the same individual for the delivery of the same results.

2 System Survival

When assessing network reliability, it is necessary to model the various access paths
and survival times for not only each system, but for each path to the system. This
requires the calculation of the following quantitative fields

« RO The Reliability function

« MTBF Mean Time Between Failures
« MTTF Mean Time to Repair/Fix

s ) The expected survival rate [24]

>
——>

O
o

VPR r\\ G
L

Fig. 2.1. In this example we model attacking a series of systems. In this example we have two
separate paths into the critical data. An attacker can either use the VPN and bypass the firewall
and other defensive controls; or the attacker can chain an attack through multiple systems.

Other measures will be introduced later. The expected survival or failure rate X is
used throughout this paper and is detailed further in EQ 3.6 and EQ 3.7. Where
possible, the standard systems reliability engineering terms have been used. In the
case of a measure such as the MTTF, this represents the time both to discover and
recover a compromised system. The true value estimate for the system comes as a
measure of the applications on the system, this may be estimated for a less
economically expensive (though less accurate) estimate. In this calculation, the
compromise measure, MTBF is best thought of as the mean time to the first failure.



This can be modelled with redundancy in the design. Here, each system is a
parallel addition to the model. Where a system is required to pass another, a serial
measure 15 added. For instance, if an attacker has to:
bypass system A (the firewall) to
compromise system B {(an authentication server) which allows
an attack against a number of DMYZ, servers (C, D and E) where
systems C and D are connected to the database through
a secondary firewall (system F) to (Not in figure 2.1)

» the database server G (as displayed in figure 2.1).

The attacker can either attack the system directly through the VPN or by following
the attack path indicated by the systems. If the firewall system A restricted the
attacker to a number of IP addresses, the attacker may do 1 of a number of things in
attacking this system (in order to gain access as if the attacker was one of these IPs):

1. Compromise the input host

2. Spoof an address between the input [P address (such as through a router
compromise at an ISP or other system)

3. Compromise the VPN

Other options, such as spoofing an address without acting as a MITM (Man In The
Middle) will leave some attacks possible that can not result in a compromise of
system G. These could have an economic impact that would be calculated separately.
Such an event that can be calculated would be a DDoS (Distributed Denial of
Services) attack on the server.

Hence, the effective attack paths are:

s Input, ABCF G
Input, A, BD,F, G
Input, A, B,E,C,F. G
Input, A, B,E, D, F, G
VPN, G

In this instance, it is necessary to calculate conditional probabilities as these paths
are not independent. Here the options need to consider first include (the paper will use
the term I to define an attack on the Input system and S to refer to a spoofed attack of
the input system):

s  The conditional probability [1] of compromising system A given a successful

PUIoA)=P(IDPAID (e

Al refers to an attack on system A using path No. 1, or Input, A, B, C, F, G)
s The conditional probability of attacking system A
s  The probability of attacking system @G, PG =PI)-PG V)
Each of the attack paths are able to be treated as independent. Hence, the overall
probability of an attack is a sum of the conditional probabilities from each attack path.
As a consequence, the attacker will most likely come over the lowest cost path, but

the probabilistic result allows for an attack from any path. The high and low
probability attack measures are jointly incorporated in the process.

spoof attack on the Input system,



Presuming no other paths (such as internal attacks etc) it is feasible to model the
alternate probability as not possible (or at least feasible). Here fy=0=¢
Additionally, the probability of an attack over path 5 (the VPN) can be readlly
calculated without further input as:

F, =Pl nG))=PF).PG V)
Here:

PAy=e™ +(—/1Vl‘)e_’if’i

PG =™ +(-A,t)e™

PG, =TT P@G,) B0 20

Here there exists a single system behind the VPN. Where more than one system
exists, it 1s necessary to calculate the joint probability as is detailed below. In the
example, with only a single system;

PG, |7)=T]P(Gs)=P(G,)x1
S P(G | V)= P(G)) EQ2.1

Equation 2.1 holds as the probability of the attacker compromising system G when
the VPN has been compromised approaches 1. This is as the attacker has a single
target with the VPN and the utality of attacking the VPN and no more is negated as no
other systems exist and the VPN offers no other utility for the attacker alone.

[3] and

The values, Ay and A are the expected survival time or the mean time to
compromise for the VPN and database respectively as configured and ¢ is the amount
of time that has passed from install and represents the current survival time of the
system [16].

Here:

P, =P7 nGy) = PO).P(G, | T)
PG, V)=
UG*JLV (/1 +/1V)f€ (Aa+ A Q22

On the other hand, the probability of compromise to system I is based on the
number of systems and as =0, L(1)—>1 . Basically, as more systems are
allowed to connect to system A, the closer the probabﬂlty of comprormse tends
towards a value of P=1. That is, as the systems available to be compromised increase,
the probability of compromise approaches certainty. This is generalised as each
addition to the system adds a positive probability of compromise when added to an
existing system [3]. This occurs as no system can be shown to have a probability of
compromise P=0. Hence, for each additional component added into the system, the
chance of compromise approaches P=1 (where it 1s finally reached at n=w).

Where there are only a limited number of systems, the probability can be computed
as a sum of the systems. Where there are a large number of systems with equivalent
{or at least similar) properties, these can be calculated through the sum of the systems.



If in the above example, system E is replaced with a series of systems (each with the
same configuration) it is possible to calculate the probability of a compromise of one
of the "E" systems as follows:

P(E)=R(E)=1-T1_, [1-P(E,)] EQ 2.3

Here, P(E) is a multiplicative and not additive function. As such, if system "E" is
defined as a DNS server with a single BIND service and SSH for management of the
host, an attacker has two means to compromising the system;,

* Attack SSH
* Attack BIND

The probability can be considered as independent in this case if there are no
restrictions. In the example, DNS is an open service, that is, P(I)=1. The SSH service
may or may not be open and could be restricted. If this is the case 0<P(I)<1. In the
simple case where no restrictions have been imposed on SSH, the probability can be
calculated as a standard independent probability formula.  This s

P(SSH)=¢ "% +(—A,t)e "+
P(DNS)=e& "™ (-4, t)e ™
P(E)=1-P(SSH).P(DNS)

.'.P(E)Zlf[ —( Az +Apam )t ( DNS;iSSH) e (Asser+ Apass )t Jre*/lssgf(iler)e*%mf Jre*/lmmf (7/’issht)ei%mr:|

P(E)_l |: { Agger +Apny Jt ( /’is ) e (Asszr + Apniy )t (
DNSSSEH
P(E) —1- |: {Agger +Apny Jt ( /’is ) e —(Agesz +Apae ( /7'5‘ h) ~(Aggar +Aone )t :|
DNSNSEH Y,
EQ2.4
The complication comes where one of the services has been restricted as a further
control. This is a combination of the probability of compromising the restrictions on
the service (that is spoofing or otherwise bypassing IP address controls) and the
compromise of the service itself. This can be represented by:

P(SSH) =[ & %" +(=Agt)e = |.P(D)
~P(SSH) = [ + (=Dt Je =" |.(1-T1, [1-P(1,)])

P(OH=1-11",[1-P(]
In this case, there exists a probability () HI:II: ( j):l where the

allowed source systems (I) are limited to a total of "n" IP addresses (or keys). The

P!
probability ( 1) of any source system being compromised will vary, but may be
estimated based on the type and location of each system. As more systems are added

) [ Agges +Apaar )2 ( ;iSSh He ) (Asger + Aoy Jt :|

[ +(=Agt)e = ]~(TLL [1= P (1,)]).[e " +(~ss

f) a Assat il



into the equation, the polynomial equation becomes more complex. In the event that
similar systems are also accessing this, these can be calculated and the equation
simplified.

For example, if two (2) classes of systems exist (Linux and Windows Vista) that

comprise the set of systems £ for a total of 4 systems (2x Windows and 2x Linux)
these can be defined using:

PU)= P(I) = &7 +(—dy, 1) e
&
(L) = P(1,) = €7 + (=, 1) & o

In the case where P =P1,)=025 and P(L)="(1,)=02

system configurations and patch status, it is possible to calculate P(I):
P(y=(1-T1.,[1-P(1)])
=1-[(1-0.25)".(1-0.2)" ]

due to the

=1-[(0.75).(0.8)" | =1-[0.5625x0.64] =1-0.36
= 0.64 EQ25

In this case, the probability of a compromise due to SSH would become:

P(SSH)=[e " +(=A,t)e = |.P(])

= 0.64[ & " (= A t)e | £ 26

With the details from the example at 2.2, it is possible to calculate the survival
function for system E:

P(E)=1-0.64[P(SSH ).L(DNS)]
)

D, SSh

P(E) =1-064 |:e—(’7§5}f +Apas )t + (/FLDNS/IE'SE,’H )rle—(lsm“lpm)f _ (i )re—(lssﬁ+ipm)f:|

EQ2.7

Thus, there exists a method to calculate the probability of each system as well as
the conditional probability of that system.

The addition of a device (such as an IDS) changes or otherwise impacts £ and adds
additional complexity to the calculations. An IDS for instance can limit the value of ¢
through a probabilistic feedback process. The more effective the IDS is, the quicker
an attack or other incident will be intercepted. In this instance, ¢ becomes a
probabilistic function based on how effective the IDS itself is. This becomes a
combination of the following factors:

s  The inherent accuracy of the IDS (which is a trade-off between TYPE I and
TYPE Il errors [22] and it is a cost function in itself)

¢ The missed detection rate (even where an incident is noted, the analyst may
miss the detection. As more false negatives are seen, the missed detection



rate increases (Ikeda, & Watanabe, 1962). As a result, increasing false
negatives to capture all possible attacks ends in a limit where the IDS is no
longer effective).

A Type I error 1s often denoted as a “false positive”. This involves incorrectly
rejecting the null hypothesis in favor of the alternative. Where an IDS is involved, a
false positive would involve detecting and alerting on an event that did not actually
happen to be an incident or attack. A Type Il error is the opposite of a Type I error. A
Type II error in an IDS system involves the false acceptance of the null hypothesis
and is commonly referred to as a “false negative”. It would imply that the packet or
traffic is not an attack and is safe when it is in fact malicious or otherwise dangerous.

The TDS forms a cost function as the increase in reporting results in a greater
number of false positives that need to be investigated. In limiting the false positives,
the likelihood of missing an incident of note also increases. Each validation of a false
positive takes time and requires interaction from an analyst. Hence the tuning of an
IDS is balanced on maximizing the detection against cost.

In the event that the IDS does not detect the attack, the function mirrors that of the
system without the IDS in effectiveness. Note that the cost of the system with the 1DS
15 greater than the system without IDS. As a result, the addition of IDS is a limiting
function. An increase in cost adds to the power of the IDS. This is, more analyst time
and more detection capability lowers the false negative and false positive rate through
an increase in cost. Hach DS system has an expected TYPE I and TYPE II error rate
that will vary as the system is tuned to a particular environment. The result of this is
an individualistic function for the organisation that can only be generally
approximated for other organisation (even when the same IDS product is deploved).

For a given probability of survival, it is possible to calculate the expected survival
time (t) of the system. This process becomes computationally infeasible in large
systems with numerous inputs. For instance, on system E (as defined in EQ 2.3) it is
feasible to rearrange the equation of the expected probability of system E being
compromised. For instance, if a calculation of the expected function of survival time
for a set survival probability P is desired, rearrange the equations in EQ 2.3 as
follows.

P(E)=1-0.64| e Vs eX L (A Yite 0520 — (9, =

DNST TS55H (2] SR

) te—(ism + Apggs )t :|

DNS*5S5H

A P=099, 099=1-0.64] ¢ V=l y (4 g Ve Ul (4 — G, e Ve e

or o Vst lons) _|_(;b y )t2e—(/7§5H+ADm)f — (ﬂ, — A, )te_(%SHJJDM)t =0.0015625

DN "55H i)

]n(e—(/l_gmwlzm)f +(;L, 1 )tze—(ﬂs55+/1m:s)f _ (/1

s YssE — - )fe_(lSSHMDNS)t) =-6.4615
EQ238
This result is in the form of:

At+BIn(t)y=C
- f+In(H)|—==>1¢
From EQ 2.8 it is clearly seen that as [—>® [ ( )] . From these
equations, as long as ¢ is large, an approximation can be deployed to obtain a lower



limit estimate of At+BIn())=C as At=C A5 such an approximate for the
lower limit of time for system E's survival is defined as:

jf_6.4615+1n()bDNS+/’i,

SSH )

2(Aeszr + Ao ) Q2.9

In EQ 2.4, it is demonstrated that the lower the value of t, the greater the error.
Measuring "t" in seconds and substituting normal system values of A allows for the
use of Monte Carlo simulations to approximate the expected value of ¢.

For simplicity, let R represent reliability and Q the unreliability (hence, 1-R=Q).

For each application, a possibility exists to use Bayes' theorem to model the
number of vulnerabilities and the associated risk. A mathematical introduction to
Bayes' Theorem 1s available online from Weisstein [26] and in more detail from Joyce
[17] For open ports, the person evaluating risk can use the expected reliability of the
software together with the expected risk of each individual vulnerability to model the
expected risk of the application. For instance, it is conceivable to model

P(SSIH)

using this method.
P(AnB
pia)=o
( ) EQ2.10
alternatively;
P(ANB)=P(B)P(A|B)=P(A)P(B| 4)

Over time, as vulnerabilities are uncovered and fixed (assuming that new
vulnerabilities have not been introduced), fewer issues will remain. Hence, the
confidence in the software product increases. This also means that mathematical
observations can be used to produce better estimates of the number of software
vulnerabilities as more are uncovered.

It 1s thus possible to observe the time that elapses [11] since the last discovery of a
vulnerability. This value is dependent upon the number of vulnerabilities in the
system and the number of users of the software. The more vulnerabilities, the faster
the discovery rate of bugs. Likewise, the more users of the software, the faster the
existing vulnerabilities are found (through both formal and adverse discovery).

2.1 Mapping Vulnerabilities within software

Now let £ stand for the event where a vulnerability is discovered within the Times
T and T+# for n vulnerabilities in the software
T+h
P(E|m)= j noee” " dt = nae™ h
T
Where a vulnerability 1s discovered between time T and 7-+#4 use Bayes® Theorem
to compute the probability that » bugs exist in the software:



"
ne—(naTJrﬁ) ﬁ_

P(nvulnembalmes ‘ E) = n! I
Z“" ne—(naTJrﬁ) ﬁ_
- g EQ2.11
From this it can be seen that:
(ﬁe_ &T )n—l
n—=1)!
P(nvulnembalmes ‘ E) = ( —)al” -1
s |(7e)
=0l (n-1)!
EQ2.12

EQ 2.12 will apply for all versions of software [29]. As patches and updates are
applied to the software, existing vulnerabilities will be rectified and removed, but new
flaws related to how many new lines of code have been added in the patching process
will be introduced and will also need to be calculated.

By summing the denominator it can understood that in observing a vulnerability at

time T after the release and the decay constant for defect discovery is & | then the
conditional distribution for the number of defects remaining 1s a Poisson distribution

—ar
with expected number of defects pe )

Hence:
—ar \!
o | fe
Py PT)
Be 7!
: EQ2.13
This can be extended to create a method to calculate the expected failure of a
system based on the interaction of multiple software products.

3 Exponential Failure

The reliability function (also called the survival function) represents the probability
that a system will survive a specified time ¢ Reliability is expressed as either MTBF
(Mean time between failures) or MTTF (Mean time to failure). The choice of terms is
related to the system being analysed. In the case of system security, it relates to the
time that the system can be expected to survive when exposed to attack. This function
1s hence defined as:

R) = 1-Fp1) EQ31

The function F(t) in EQ 3.1 is the probability that the system will fail within the
time 't As such, this function is the failure distribution function (also called the
unreliability function). The randomly distributed expected life of the system # can be

represented by a density function, F(®) and thus the reliability function R(t) can be
expressed as:



R(H)=1-F(@)= j F()di
¢ EQ32
The time to failure of a system under attack can be expressed as an exponential
density function:
T
J)y=—
0 EQ 3.3

where @ is the mean survival time of the system when in the hostile environment
and t is the time of interest (the time that the user wishes to evaluate the survival of
the system over). Together, the relhiability function, R(t) can be expressed as:
©  _t/8

R(r)=_[99

dir ="
EQ34

The mean ( 9) or expected life of the system under hostile conditions can hence be
expressed as:

R@ty=[e™di=e"
£ EQ35
Where M is the MTBF of the system or component under test and A 1s the

instantaneous failure rate [4] where Mean life and failure rate are related by the
formula:

g=1
0 EQ36
The failure rate for a specific time interval can also be expressed as:
P # Failures

Z Operating  Hours EQ37

Failure rates are penerally expressed in terms of failures per hour, percentage of
tailures per each 1,000 hours or the rate of failures per million hours. For instance, if a
system has a 90 day patch cycle (the total mission time) and that the total number of
software failures in that time is expected to be (or is later measured to be) 6
vulnerabilities, it is conceivable to calculate the failure rate per hour as:

=% __° 0002778
90%24 2,160 Q3.8

In the case of an exponential distribution for the system mean survival under
attack, the MTBF can be defined as:

MTBF = l = L =360hours

A 0.002778 EQ3.9
Hence, it is expected the system to survive 15 days before a vulnerability is
discovered. This does not return when a system will actually be exploited, simply the
expected probabilistic time that can be used to project and plan future expenditure.




4 Automating the process

The main advantage to a systems engineering approach is the ease with which it can
be automated. The varicus mnputs and formula noted throughout this paper can
become inputs into a neural network algorithm (Fig. 4.1). Equation (2.1) could be
modeled in three layers (Fig 4.2).

Here, an input layer with one neuron for each Input (system or application) could
be used to map for IP Options, Malware and Buffer overflow conditions, selected
attacks etc. The system of perceptrons would be processed using a hidden neuron
layer in which each neuron represents combinations of inputs and calculates a
response based on current data coupled with expected future data, a prior data and
external systems data. Data processed at this level would feed into an output layer.
The result of the neural network would supply the output as an economic risk
function.

In this way, a risk function can be created that not only calculates data based on
existing and known variables [12], but also updates automatically using external
sources and trends. Many external sources (http://www.dshield.org) have become
available in recent vears that provide external trending and correlation points.
Unfortunately, most of these services have clipped data as the determination of an
attack is generally unclear and takes time to diagnose where much otherwise useful
data is lost. When monitoring the operation of a system or the actions of uses,
thresholds are characteristically defined above or below which alerting, alarms, and
exceptions are not reported.  This range of activity is regarded as baseline or routine
activity.

¥l ¥2 ¥ ¥4

Fig 4.1 A depiction of a Multi-Layer layer topology neural network

Multi-Layer layer topology neural networks can be used to accept data from risk
models and automatically update the risk profile of an organization. In modeling risk,
each application and system can be modeled using a perceptron.



Fig 4.2 Inputs being fed into a perceptron.

The perceptron is the computational workhorse in this system. In this it is
reasonable to model the selected risk factors for the system and calculate a base risk
that is trained and updated over time. The data from multiple organizations can be fed
into a central system [18] that can be distributed to all users. This could be integrated
and sold as a product enhancement by existing vendors or independent third parties
could maintain external datasets.

n
vij = fl E Wi ik Ty )
=0

EQ 4.1 defines the input variables as,

* x;..x, aretheinputsofthe neuron,
*  W.g.. W, arethe weights,

e f 1sanon-linear activation function,
¢ hyperbolic tangent (tanh),

* v, 15 the output of the neuron.

A large vendor such as Microsoft could create an implementation model. In place
of offering stale recommended security settings (such as currently occurs with
Microsoft’s MBSA), the risk application could automatically collect data from user
systems on patch levels and group policy configurations and utilize these in order to
calculate and report on an estimated level of risk and an expected survival time for the
system in a number of different scenarios. For instance a notebook computer could
have a set of risks. This would include the risk when connected to the corperate
network, when connected to a wireless hotspot etc.

The training of the network would require the determination of the correct weights
for each neuron. This is possible in selected systems, but a far larger effort would be
required to enable this process for more generalized deployment. The data needed for
such an effort already exists in projects such as DShield, the Honeynet Project and in
many similar endeavors. The question is whether there truly exists a will as a
community to move from an art to a science.

EQ4.1



5 Conclusion

The equations presented in this paper allow organizations to compare the deployed
risk strategies against both their own historical data and that of third parties. In this
manner, strategy can be formulated in order to optimize audits and system reviews in
a manner that detects an incident in the most economical manner. Projects are all risk
derived exercises and if our profession can better manage and calculate risk, society
will benefit.

Modeling the failure rate of systems and the propagation rate of an attack, allows
us to calculate an expected number of hosts that are anticipated to have been
compromised in the time between an audit given a specified survival function or
threat. Past data and comparisons from similar systems (such as survival data from
http://'www.dshield. org/reports.html) allow for the modeling of alternative systems
where a reported number of events have been reported against those deployed.

Dependence, variation, randomness, and frailty add to the risk toolset of
multivariate failure event analysis. Using frailty theory to model information system
risk allows us to better predict risk and to more effectively allocate scarce resources
through selecting the most economically viable targets to defend as well as choosing
the optimal detection strategies. The properties of censoring-handling and frailty
modeling have turned multivariate survival analysis into an exceptional tool for the
determination of system risk.

For decades, information security practitioners have engaged in qualitatively
derived risk practices due to the lack of a scientifically valid quantitative risk model.
This has led to both a misallocation of valuable resources with alternative uses and a
corresponding decrease in the levels of protection for many systems. Using a
combination of modem scientific approaches and the advanced data mining
techniques that are now available provides the technologies and data to create a new
approach to information systems risk and security.

The optimal distribution of economic resources across information system risk
allocations can only lead to a combination of more secure systems for a lower overall
cost. The reality is that, like all safety as an issue, information security is based on a
set of competing trade-offs between economic constraints. The goals of any
economically based quantitative process are to minimize cost and risk through the
appropriate allocation of capital expenditure. To do this, the correct assignment of
economic and legal liability to the parties best able to manage the risk (this is the
lowest cost insurer) is essential and needs to be assessed. This will allow insurance
firms to develop expert systems that can calculate risk management figures that can
be associated with information risk. This will allow for the correct attribution of
information security insurance products that can be provided businesses generally.

Externality or the quantitative and qualitative effects on parties that are affected by,
but who are not directly involved in a transaction 1s likewise seldom quantified, but is
an integral component of any risk strategy. The costs (negative) or benefits (positive)
that apply to third parties are an oft overlooked feature of economics and risk
calculations. For instance, network externality (a positive effect that can be related to
Metcalfe’s law; value of a network = 2 times the network’s number of users)
attributes positive costs to most organizations with little associated costs to
themselves. In these calculations, the time-to-market and first-mover advantages are



critical components of the overall economic function with security playing both
positive and negative roles at all stages of the process.

The processes that can enable the creation and release of actuarially sound threat
risk models that incorporate heterogeneous tendencies in  variance across
multidimensional determinants while maintaining parsimony already exist in
rudimentary form. Extending these though a combination of Heteroscedastic
predictors (GARCH/ARIMA ete) coupled with non-parametric survival models will
make these tools more robust. Effort needs to be expended in the creation of models
where the underlying hazard rate (rather than survival time) is a function of the
independent variables (covariates). Cox's Proportional Hazard Model with Time-
Dependent Covariates would be a starting point, with a number of non-parametric
methods available where cost allows.

As we move further into the 21% century, it is time we as a profession started to
model risk as a scientific process and move away from the art based cottage industry
that exists right now. This paper has presented a number of methods that can be used
to gauge the expected failure events in a system of computer hosts.
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