

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

1 | P a g e

Version 2.8

PROJECT

Intelligent Daemon System

Detailed Design

&

Architecture

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

2 | P a g e

Table of Contents
REVISION HISTORY ... 8

Definitions, Acronyms and Abbreviations ... 10

Acronyms and Abbreviations of the Current Document ... 12

1. References .. 13

1.1 Online References ... 13

1.2 Bitcoin System Online References .. 16

1.3 Algorithms and Math online references ... 19

1.4 Offline References ... 20

1.5 Reference Documents ... 20

2. Intelligent Daemon System Architecture .. 21

2.1 High Level Architecture ... 21

2.1.1 Architecture Diagram .. 22

2.1.2 Technologies and Applications.. 24

2.2 Single-sig Transaction Management SubSystem .. 25

2.2.1 High Level of STrxMSS Architecture .. 25

2.2.2 Layers of STrxMSS Architecture .. 25

2.2.3 Transaction Management Component ... 27

2.2.4 Keys Management Component .. 28

2.2.5 RESTful Web Sevice ... 29

2.3 Accounting Transaction Management SubSystem ... 30

2.4 Bank Transaction Management SubSystem ... 30

2.5 Exchange Transaction Management SubSystem .. 30

2.6 Message Transaction Management SubSystem ... 30

2.7 Contracts Management SubSystem .. 30

2.8 Monitoring System .. 31

2.9 Daemon Core System .. 32

2.9.1 FOS Daemon Core Component ... 33

2.9.2 Wrapper of Daemon Core Component ... 33

2.10 Shared Libraries .. 34

2.10.1 Common Ware API .. 34

2.10.2 Shamir’s Secret Sharing Scheme API ... 35

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

3 | P a g e

2.10.3 ECDSA API .. 35

2.10.4 Mnemonic Code Generator API .. 37

2.11 Configurations and Logs .. 38

2.11.1 Main Configuration File ... 38

2.11.2 Log types and rules ... 38

2.12 MQs Layer ... 40

2.12.1 MQ Specification for Single-sig Transaction Management SubSystem .. 41

2.12.2 MQ Specification for Accounting Transaction Management SubSystem ... 41

2.12.3 MQ Specification for Bank Transaction Management SubSystem ... 41

2.12.4 MQ Specification for Exchange Transaction Management SubSystem .. 41

2.12.5 MQ Specification for Message Transaction Management SubSystem ... 41

2.12.6 MQ Specification for Contracts Management SubSystem .. 41

2.12.7 MQ Specification for Monitoring System .. 42

3. Databases .. 44

3.1 Single-sig Transaction Management SubSystem DBs ... 44

3.1.1 Transaction Management Component DBs Diagram ... 44

3.1.2 Transaction Management Component DBs Description .. 45

3.1.3 Keys Management Component DB Diagram .. 59

3.1.4 Keys Management Component DBs Description .. 59

3.2 Accounting Transaction Management SubSystem DBs .. 60

3.3 Bank Transaction Management SubSystem DBs .. 60

3.4 Exchange Transaction Management SubSystem DBs ... 61

3.5 Message Transaction Management SubSystem DBs .. 61

3.6 Contracts Management SubSystem DBs ... 61

3.7 Shared DBs .. 62

3.7.1 IntDS Shared Data DB Diagram ... 62

3.8 Monitoring System DB .. 63

3.8.1 IntDS Shared Data DB Description .. 63

3.8.2 Monitoring System DB Diagram .. 69

3.8.3 Monitoring System DB Description ... 70

3.9 Functions and Stored Procedures Specifications .. 75

3.9.1 STrxMSS Functions and Stored Procedures .. 75

3.9.2 Monitoring System Functions and Stored Procedures ... 92

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

4 | P a g e

4. Intelligent Daemon System Workflow Diagrams .. 93

4.1 Single-sig Transaction Management SubSystem Workflows .. 93

4.1.1 Outbound Transaction Workflows .. 94

4.1.2 Wallet Functions Workflows ... 102

4.1.3 Inbound Transactions Functions Workflows ... 105

4.1.4 Warm Storage Functions Workflows .. 107

4.1.5 Other Functions Workflows .. 110

4.1.6 STrxMSS MQ Consumers Workflows .. 111

4.2 Accounting Transaction Management SubSystem Workflows ... 113

4.3 Bank Transaction Management SubSystem Workflows ... 113

4.4 Exchange Transaction Management SubSystem Workflows .. 113

4.5 Message Transaction Management SubSystem Workflows ... 113

4.6 Contracts Management SubSystem Workflows ... 114

4.7 Monitoring System Workflows ... 114

4.7.1 Build local blockchain (system start up for first time) .. 115

4.7.2 Update local blockchain and scan transaction data ... 124

4.7.3 Monitor incoming transactions ... 132

4.7.4 Monitor outbound transactions.. 135

4.7.5 Monitor log files .. 139

5. Intelligent Daemon System Interfaces .. 144

5.1 Single-sig Transaction Management SubSystem Interface ... 144

5.1.1 Wallet Functions ... 145

5.1.2 Outbound Transaction Functions .. 151

5.1.3 Inbound Transaction Functions ... 162

5.1.4 Warm Storage Functions ... 166

5.1.5 Other Functions... 168

5.2 Accounting Transaction Management SubSystem Interface .. 171

5.3 Bank Transaction Management SubSystem Interface .. 171

5.4 Exchange Transaction Management SubSystem Interface ... 171

5.5 Message Transaction Management SubSystem Interface .. 171

5.6 Contracts Management SubSystem Interface .. 171

5.7 Daemon Core System Interface .. 171

5.7.1 Description of commonly used data structures, definitions in bitcoin core RPCs 171

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

5 | P a g e

5.7.2 Remote Procedure Calls .. 173

5.7.3 Java Wrapper of Daemon Core RPC .. 236

6. Digital Algorithms and Schemes ... 237

6.1 Mnemonic Code Generation Scheme ... 237

6.2 Shamir’s Secret Sharing Scheme ... 239

6.2.1 Basic Terms ... 239

6.2.2 Split Secret into shares .. 239

6.2.3 Create shares .. 241

6.2.4 Reconstruct Secret from given number of shares .. 241

6.3 Elliptic Curve Digital Signature Algorithm in case Bitcoins ... 244

6.3.1 Points operations: ... 245

6.3.2 Private/Public Key Generation .. 251

6.3.3 Transaction (Message) Signature Generation... 256

6.3.4 Signature Verification.. 258

7. Ways to Create Bitcoin Address .. 260

7.1 Single signature Btc Address ... 260

7.2 Multi signature Btc Address .. 262

8. Stack-Based Btc Scripting Language .. 263

8.1 Script for Pay to Public Key Hash (P2PKH) Transaction .. 263

8.1.1 “scriptSig” structure in case P2PKH .. 263

8.1.2 “scriptPubKey” structure in case P2PKH ... 264

8.1.3 Execution Steps of Combined Validation Script in case P2PKH .. 265

8.2 Pay to Public Key (P2PK) ... 266

8.3 Multi-Signature Transaction Script ... 267

8.4 Data Output (OP_RETURN) Script ... 268

8.5 Pay to Script Hash (P2SH) .. 268

9. Methods of the Creation of Different Type’s Transactions. ... 269

9.1 Block’s Anatomy .. 269

9.2 Introduction in a Transaction’s Anatomy.. 272

9.3 Transaction Fees and Priority (default settings) ... 277

9.4 Steps to Create Usual Single-Sig Transactions .. 279

9.4.1 Steps to create Transaction by using RPC from FOS Daemon .. 279

9.4.2 Steps to crate Raw-Transaction in case IntDS implementation .. 284

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

6 | P a g e

9.5 Steps to Create Multi-Sig transactions .. 290

9.6 Ways to Create Contracts ... 291

9.6.1 Bitcoin Contract Basics .. 291

9.6.2 Types of contracts ... 292

9.7 Method to Create an IP Transaction ... 305

9.8 Method to Create a Message Transaction .. 306

9.9 Ways to Create Open Assets Transactions ... 310

10. Intelligent Daemon System Class and Sequence Diagrams .. 311

10.1 Single-sig Transaction Management SubSystem Diagrams .. 311

10.2 Accounting Transaction Management SubSystem Diagrams ... 311

10.3 Bank Transaction Management SubSystem Diagrams ... 311

10.4 Exchange Transaction Management SubSystem Diagrams .. 311

10.5 Message Transaction Management SubSystem Diagrams ... 311

10.6 Contracts Management SubSystem Diagrams .. 311

10.7 Monitoring System Diagrams .. 311

10.8 Diagrams for Wrapper of DmnCC ... 311

10.9 Shared Libraries Class and Sequence Diagrams .. 312

10.9.1 Common Ware API .. 312

10.9.2 4S API .. 312

10.9.3 ECDSA API .. 312

10.9.4 Mnemonic Code Generator API .. 312

11. Integration with External Systems .. 313

11.1 Interfaces .. 313

11.2 DBs Mapping Recommendations .. 313

Appendix A – Transaction Statuses ... 314

Appendix B – Transaction Types ... 315

Appendix C – Opcode types .. 316

Appendix D – Opcodes [2.2] ... 317

Appendix E – Types of Script Pairs .. 326

Appendix F – Script Parameters Names .. 329

Appendix G – Value Conversion .. 330

Appendix H – Binary <–> Decimal Conversions .. 333

Appendix I – Hex <–> Decimal Conversions .. 335

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

7 | P a g e

Appendix J – Common prefixes for version bytes ... 338

Appendix K – Sighash Type codes [2.22] ... 339

Appendix L – IntDS Error Codes .. 340

Appendix M – Blockchain Rejection Messages ... 343

Glossary ... 344

Project Authorisation .. 347

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

8 | P a g e

REVISION HISTORY

Version Description Date Author

1.11 Appendix L and 5.7.3 point were added. 3.1.1,
3.1.2, 3.8, 5.1, 5.7 points were updated

21/10/2015-

30/10/2015

Olga Kuznetsova

See revision history of previous versions in the DD v1.11

2.0 Major updates related to “Warm Storage”
solution. Appendix F, Point 2 and DB structure
(Point 3) were updated. 1.2, 5.1 sub-points
were updated. Table of Contents was
refreshed.

04/11/2015 Olga Kuznetsova

2.1 Appendix L and 1.1, 2, 3 points were updated 05/11/2015-

12/11/2015

Olga Kuznetsova

2.2 Appendix M was added. Appendix A and 1.1,
1.2, 2.1, 3, 5.1 points were updated

16/11/2015-

19/11/2015

Olga Kuznetsova

2.3 New point 2.11 “Configuration and Logs” was
added. 2.10.2, 3.1, 4.1, 5.1, 5.7.3, 6.2.4 points
were updated. Acronyms … of Current Doc was
updated.

20/11/2015-

01/12/2015

Olga Kuznetsova

2.4 Points 1.2, 2.12.7, 2.8, 3.9.1, 3.9.2, 4.7, 5.7.2,
9.1 were updated

2/12/2015 Trupti Birje

2.5 2.3 and 2.4 versions were merged 2/12/2015 Olga Kuznetsova,
Trupti Birje

2.6 Points 3.9.1, 4.1.1, 4.1.2, 4.1.3, 4.1.4, 4.1.5 and
Appendix L were updated

3/12/2015-

18/12/2015

Trupti Birje

2.7 “Definitions, Acronyms and Abbreviations”,
Glossary, Appendixes L and E, 2.2.3, 2.10.2,
2.10.4, 2.11.2, 2.12, 2.12.7, 2.8, 3.1.1, 3.1.2,
3.9.1, 4, 4.1.1, 4.1.3, 5.1.1, 5.1.3 points were
updated

3/12/2015-

18/12/2015

Olga Kuznetsova

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

9 | P a g e

2.8 2.6 and 2.7 versions were merged 18/12/2015 Olga Kuznetsova,
Trupti Birje

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

10 | P a g e

Definitions, Acronyms and Abbreviations

ASN.1 Abstract Syntax Notation One [1.14]

API Application Programming Interface

BER Basic Encoding Rules

BIP Bitcoin Improvement Proposal

BSD license Berkeley Source Distribution license [1.11]

BTC, Btc Bitcoin

CER Canonical Encoding Rules

CDDL Common Development and Distribution License

DB Data Base

DER Distinguished Encoding Rules [1.15]

ECDSA Elliptic Curve Digital Signature Algorithm

FOS Free Open Source

GNU LGPL v2 GNU Library General Public License version 2 [1.12]

GPL General Public License

GUI Graphic User Interface

JSON JavaScript Object Notation = an open language-independent data format that

uses human-readable text to transmit data objects consisting of attribute–

value pairs.

MQ Message Queue

Multi-sig Multi signature

NAF Non-Adjacent Form

P2P Peer-to-Peer

P2PKH Pay-to-Public-Key-Hash

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

11 | P a g e

P2SH Pay-to-Script-Hash

PK Primary Key

PSQL SP PostgreSQL stored procedures

RDB Relational Data Base

REST Representational State Transfer = architectural style

RPC Remote Procedure Call

SHA Secure Hash Algorithm

Single-sig Single signature

SW Software

Trx Transaction

txid, TXID Transaction Identifier = hash in hex of signed transaction

UTXO Unspent Transaction Output

Web App. Web Application

Opcode Operation code

4S Shamir’s Secret Sharing Scheme

WIF Wallet Import Format

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

12 | P a g e

Acronyms and Abbreviations of the Current Document

ATrxMSS Accounting Transaction Management SubSystem

BTrxMSS Bank Transaction Management SubSystem

ContrMSS Contracts Management SubSystem

CW API Common Ware API

DmnCS Daemon Core System

ETrxMSS Exchange Transaction Management SubSystem

ECDSA API Elliptic Curve Digital Signature Algorithm API

FOS DmnCC FOS Daemon Core Component

IntDS Intelligent Daemon System

KeysMC Keys Management Component

MCG API Mnemonic Code Generator API

MTrxMSS Message Transaction Management SubSystem

MntS Monitoring System

PubKey Public Key

PriKey Private Key

STrxMSS Single-sig Transaction Management SubSystem

TrxMC Transaction Management Component

WDmnCC Wrapper of Daemon Core Component

EncrPK Encrypted Private Key

4S API Shamir’s Secret Sharing Scheme API

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

13 | P a g e

1. References
1.1 Online References

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

14 | P a g e

Reference Website URL Description

[1.1] http://en.wikipedia.org/wiki/Representational_state_transfer REST

[1.2] https://bitcoin.org/en/download Bitcoin Core

[1.3] http://nginx.org/en/ Nginx official website

[1.4] https://www.rabbitmq.com/ RabbitMQ official
website

[1.5] http://tomcat.apache.org/ Tomcat official website

[1.6] http://www.postgresql.org/ PostgreSQL official
website

[1.7] http://www.oracle.com/technetwork/java/api-141528.html Java API specifications

[1.8] http://slony.info/ Slony-I official website

[1.9] http://www.pgpool.net/mediawiki/index.php/Main_Page Pgpool-II official website

[1.10] http://www.keepalived.org/download.html Keepalived official
website

[1.11] http://www.linfo.org/bsdlicense.html BSD license

[1.12] http://www.gnu.org/licenses/old-licenses/lgpl-2.0.en.html GNU LGPL v2

[1.13] http://dotnetcodr.com/2014/06/05/rabbitmq-in-net-data-

serialisation/

RabbitMQ data
serialization example

[1.14] https://en.wikipedia.org/wiki/Abstract_Syntax_Notation_One ASN.1 description

[1.15] https://en.wikipedia.org/wiki/X.690#DER_encoding X.690 specifying several
ASN.1 encoding formats:
BER, CER, DER

[1.16] http://blog.mybatis.org/p/about.html

http://mybatis.org/mybatis-3/dependency-info.html

myBatis

[1.17] http://code.google.com/p/spock/ Spock framework

[1.18] http://junit.org/ JUnit framework

http://en.wikipedia.org/wiki/Representational_state_transfer
http://nginx.org/en/
https://www.rabbitmq.com/
http://tomcat.apache.org/
http://www.postgresql.org/
http://www.oracle.com/technetwork/java/api-141528.html
http://slony.info/
http://www.pgpool.net/mediawiki/index.php/Main_Page
http://www.keepalived.org/download.html
http://www.linfo.org/bsdlicense.html
http://www.gnu.org/licenses/old-licenses/lgpl-2.0.en.html
http://dotnetcodr.com/2014/06/05/rabbitmq-in-net-data-serialisation/
http://dotnetcodr.com/2014/06/05/rabbitmq-in-net-data-serialisation/
https://en.wikipedia.org/wiki/Abstract_Syntax_Notation_One
https://en.wikipedia.org/wiki/X.690#DER_encoding
http://blog.mybatis.org/p/about.html

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

15 | P a g e

[1.19] http://www.jmock.org/ JMock framework

[1.20] http://www.postgresql.org/docs/8.0/static/plpgsql.html PL/pgSQL

[1.21] http://www.postgresqltutorial.com/introduction-to-postgresql-

stored-procedures/

Introduction to
PostgreSQL Stored
Procedures

[1.22] https://jersey.java.net/ Jersey Framework

[1.23] https://jax-rs-spec.java.net/
JAX-RS API

[1.24] http://ant.apache.org/ Apache Ant home page

[1.25] http://ant.apache.org/ivy/ Apache Ivy home page

[1.26] http://json.org/ JSON representation

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

16 | P a g e

1.2 Bitcoin System Online References

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

17 | P a g e

Reference Website URL Description

[2.1] https://en.bitcoin.it/wiki/Transaction Bitcoin Transactions

[2.2] https://en.bitcoin.it/wiki/Script Scripting system for Btc
transactions

[2.3] https://en.bitcoin.it/wiki/Block_chain Block Chain description

[2.4] https://en.bitcoin.it/wiki/Genesis_block
Genesis Block definition

[2.5] https://en.bitcoin.it/wiki/Blocks Blocks description

[2.6] https://github.com/OpenAssets/open-assets-

protocol/blob/master/specification.mediawiki

Open Assets
Transactions

[2.7] https://en.bitcoin.it/wiki/Contracts Contracts Transactions

[2.8] https://en.bitcoin.it/wiki/Bitcoin_Improvement_Proposals BIP definition

[2.9] https://github.com/bitcoin/bips/ BIPs list in the github

[2.10] https://en.bitcoin.it/wiki/IP_Transactions IP Transaction

[2.11] https://en.bitcoin.it/wiki/Transaction_fees Transaction Fees info

[2.12] https://en.bitcoin.it/wiki/Original_Bitcoin_client/API_calls_list
Btc client API

[2.13] https://en.bitcoin.it/wiki/Protocol_documentation
Btc protocol overview

[2.14] https://en.bitcoin.it/wiki/Technical_background_of_Bitcoin_addr

esses

Btc Addresses v1
overview

[2.15] https://en.bitcoin.it/wiki/Address
Btc Address definition

[2.16] https://bitcoin.org/en/developer-reference#get-tx
Btc Core RPCs

[2.17] https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
BIP-0039

[2.18] https://github.com/bitcoin/bips/blob/master/bip-0039/english.txt
Wordlist for BIP-0039

[2.19] https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
BIP-0065

[2.20] https://bitcoinxt.software/
Bitcoin XT

https://en.bitcoin.it/wiki/Script
https://en.bitcoin.it/wiki/Block_chain
https://en.bitcoin.it/wiki/Genesis_block
https://en.bitcoin.it/wiki/Blocks
https://github.com/OpenAssets/open-assets-protocol/blob/master/specification.mediawiki
https://github.com/OpenAssets/open-assets-protocol/blob/master/specification.mediawiki
https://en.bitcoin.it/wiki/Contracts
https://en.bitcoin.it/wiki/Bitcoin_Improvement_Proposals
https://github.com/bitcoin/bips/
https://en.bitcoin.it/wiki/IP_Transactions
https://en.bitcoin.it/wiki/Transaction_fees
https://en.bitcoin.it/wiki/Original_Bitcoin_client/API_calls_list
https://en.bitcoin.it/wiki/Protocol_documentation
https://en.bitcoin.it/wiki/Technical_background_of_Bitcoin_addresses
https://en.bitcoin.it/wiki/Technical_background_of_Bitcoin_addresses
https://en.bitcoin.it/wiki/Address
https://bitcoin.org/en/developer-reference#get-tx
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0039/english.txt
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://bitcoinxt.software/

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

18 | P a g e

[2.21] http://chimera.labs.oreilly.com/books/1234000001802/ch04.html

#base58

Mastering Bitcoins
chapter 4

[2.22] https://en.bitcoin.it/wiki/OP_CHECKSIG
Sighash types

[2.23] https://en.bitcoin.it/wiki/File:Bitcoin_OpCheckSig_InDetail.png
Trx verification Steps:
OP_CHECKSIG
(SIGHASH_ALL only)

[2.24] https://github.com/bitcoin/bips/blob/master/bip-

0065.mediawiki#freezing-funds

BIP-0065 description

[2.25] https://github.com/bitcoin/bips/blob/master/bip-

0061.mediawiki#freezing-funds

BIP-0061 description

[2.26] http://codesuppository.blogspot.com.au/2014/01/how-to-parse-

bitcoin-blockchain.html

How to parse bitcoin
blockchain

http://codesuppository.blogspot.com.au/2014/01/how-to-parse-bitcoin-blockchain.html
http://codesuppository.blogspot.com.au/2014/01/how-to-parse-bitcoin-blockchain.html

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

19 | P a g e

1.3 Algorithms and Math online references

Reference Website URL Description

[3.1] http://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Al

gorithm

ECDSA

[3.2] http://en.wikipedia.org/wiki/Public-key_cryptography Public-key cryptography

[3.3] https://en.bitcoin.it/wiki/Base58Check_encoding Base58Check_encoding

[3.4] https://en.wikipedia.org/wiki/Shamir%27s_Secret_Sharing Shamir’s Secret Sharing
Scheme

[3.5] https://tools.ietf.org/html/rfc6979 Deterministic ECDSA

[3.6] https://en.wikipedia.org/wiki/Unix_time Unix Epoch timestamp

[3.7] https://en.wikipedia.org/wiki/Lagrange_polynomial Lagrange polynomial

[3.8] https://en.wikipedia.org/wiki/Congruence_relation Congruence relation

[3.9] https://en.wikipedia.org/wiki/Modular_arithmetic Modular arithmetic

[3.10] https://en.wikipedia.org/wiki/Affine_coordinate_system Affine coordinate system

[3.11] https://en.wikipedia.org/wiki/Base64 Base 64 Encoding

[3.12] https://en.wikipedia.org/wiki/Base58 Base 58 Encoding

http://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
http://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
http://en.wikipedia.org/wiki/Public-key_cryptography
https://en.bitcoin.it/wiki/Base58Check_encoding
https://en.wikipedia.org/wiki/Unix_time

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

20 | P a g e

1.4 Offline References

Reference Document Name

[4.1] Brier, ´E., D´ech`ene, I., Joye, M.: Unified point addition formulæ for elliptic curve
cryptosystems. In Nedjah, N., de Macedo Mourelle, L., eds.: Embedded Cryptographic
Hardware: Methodologies and Architectures. Nova Science Publishers
(2004) 247–256

[4.2] Douglas Stebila, Nicolas Th´eriault: Unified Point Addition Formulæ and
Side-Channel Attacks. Institute for Quantum Computing, University of Waterloo, Waterloo,
ON, Canada, Department of Combinatorics and Optimization, University of Waterloo,
Waterloo, ON, Canada

[4.3] Di Wang, Supervisor: Dr. Nicolas T. Courtois; Secure Implementation of ECDSA Signatures in
Bitcoin. MSc in Information Security. University College London, September 17, 2014

[4.4] E. Brier and M. Joye. Weierstraß elliptic curves and side-channel attacks. Public Key
Cryptography, pages 335–345, 2002.

[4.5] Billy Bob Brumley. Efficient Elliptic Curve Algorithms for Compact Digital Signatures.
HELSINKI UNIVERSITY OF TECHNOLOGY, Department of Computer Science and Engineering &
Laboratory for Theoretical Computer Science, Espoo, November 27, 2006

[4.6] Ernst G. Straus. Addition chains of vectors (problem 5125).
American Mathematical Monthly, 71:806–808, 1964.

1.5 Reference Documents

Reference Document Name Description

[5.1] “Intelligent Daemon System” Project Charter Project Charter

[5.2] “Intelligent Daemon System” Specification of Functionality Functional Requirements

[5.3] “eWallet Web Application” Detailed Design Detailed Design

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

21 | P a g e

2. Intelligent Daemon System Architecture
2.1 High Level Architecture
Intelligent Daemon System (IntDS) architecture is based on SOA and Microservice architecture approach

to support different types of consumers (Web applications, Mobile applications, 3rd party’s applications,

etc.) The System should handle HTTP/HTTPS requests by executing business logic; accessing a database;

exchanging messages; and returns a JSON [1.26]/XML response to a consumer system. The System SW

configuration should use IPv6 protocol as much as possible. The System will use IPv4 protocol in case

configuration problems with IPv6.

The diagram below (Pic. 2.1.1) shows the skeleton of IntDS layers.

Pic. 2.1.1

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

22 | P a g e

2.1.1 Architecture Diagram

IntDS high level architecture includes (Pic. 2.1.2):

1. Transaction Management SubSystems layer: each sub-system implements main business logic

related to particular External system or application. Currently, there are 6 sub-systems which

implements different types of Btc transactions (see Appendix B):

- Single-sig Transaction Management SubSystem (STrxMSS) supports “eWallet” web application

and has possibility to support similar applications by using simple “Single-sig Trxs” type.

- Accounting Transaction Management SubSystem (ATrxMSS) supports “Accounting”

applications by using Financial Single-sig/Multi-sig Trxs types. ATrxMSS has possibility to interact

with STrxMSS or another sub-system if necessary.

- Bank Transaction Management SubSystem (BTrxMSS) supports “eBanking” web application

and has possibility to support similar applications by using Financial Single-sig/Multi-sig Trxs

types.

- Exchange Transaction Management SubSystem (ETrxMSS) supports “Exchange” application.

ETrxMSS uses different types of Btc transactions as:

o Financial Single-sig Trxs

o Financial Multi-sig Trxs

o Open Assets Trxs

o IP Trxs

o Contracts

- Message Transaction Management SubSystem (MTrxMSS) supports “eMessage” web

application and has possibility to support similar applications by using “Message Trxs” type.

MTrxMSS has possibility to interact with ETrxMSS or another sub-system if necessary.

- Contracts Management SubSystem (ContrMSS) supports any “Smart Contacts” applications by

using transactions of “Contract” type.

Additional sub system can be added in current design according to new business logic requests if

necessary.

2. Monitoring System (MntS): provides Block Chain monitoring capabilities for each sub system. MntS

consists of DB and Multithread application.

3. Daemon Core System (DmnCS): coordinates how the network processes transactions. DmnCS

consists of Load Balancing Layer, FOS Daemon Core Component (DmnCC) and Wrapper of DmnCC

which is REST[1.1] services.

4. MQs Layer: provides asynchronous interactions between each sub system and MntS via MQ broker.

5. Shared DBs: stores Data which can be used by each sub system depending on business logic.

6. Shared Components: provides shared functionality and libraries for each sub system.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

23 | P a g e

Pic. 2.1.2

IntDS has Shared Libraries (as java jar files) which can be plugged into application or used as standalone if

it is needed:

1. Common Ware API (CW API): implements services logic as connection types (DB, Daemon, MQ,
etc.), log record types, performance records, common utilities, etc. CW API is used in all sub
systems.

2. 4S API: implements a splitting and reconstructing of secret string according to Shamir’s Secret
Sharing Scheme [3.4]

3. ECDSA API: implements Elliptic Curve Digital Signature Algorithm to generate a public/private keys
pair.

4. Mnemonic Code Generator API (MCG API): implements “Mnemonic code” generator with a pre-

defined wordlist.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

24 | P a g e

2.1.2 Technologies and Applications
The technology stack used in the development of the Intelligent Daemon System includes the following
pieces of software:

Title Latest Version
(Oct. 2015)

Description

1 Java [1.7] 8 Programming language

2 JDK 1.8.0_60 Java Development Kit

3 JAX-RS [1.23] 2.0 JAX-RS is Java API for RESTful Services

4 Jersey [1.22] 2.22.1 Jersey RESTful Web Services framework is open source,
production quality, framework for developing RESTful Web
Services in Java that provides support for JAX-RS APIs and
serves as a JAX-RS (JSR 311 & JSR 339) Reference
Implementation.

5 Ant [1.24] 1.9.6 Apache Ant is a Java library and command-line tool. The main
usage of Ant is the build of Java applications. Ant can also be
used effectively to build non Java applications, for instance C or
C++ applications.

6 Ivy [1.25] 2.4.0 Apache Ivy is a tool for managing (recording, tracking, resolving
and reporting) project dependencies. Tight integration with
Apache Ant

7 Groovy 2.4 Programming language

8 Spock [1.17] 1.0 Spock is a testing and specification framework for Java
applications

9 JUnit [1.18] 4.12 Framework for tests and integration tests

10 Jmock [1.19] 2.6.1 Framework for tests and integration tests

11 PostgreSQL [1.6] 9.4.5 A free DB server

12 Slony-I [1.8] 2.2.4 Slony-I is a "master to multiple slaves" replication system for
PostgreSQL supporting cascading (e.g. - a node can feed
another node which feeds another node...) and failover.

13 Pgpool-II [1.9] 3.4.0 Multipurpose connect proxy for PostgreSQL

14 Tomcat [1.5] 8.0.27 FOS Java Servlet Container

15 NGINX [1.3] 1.9.5 HTTP and reverse proxy server that provides load balancing
functionality on HTTP level.

16 Keepalived
[1.10]

1.2.19 A routing software written in C for load balancing and high-
availability to Linux system.

17 Bitcoind [1.2] 0.11 FOS program that implements the Bitcoin protocol for
command line and RPC use.

18 RabbitMQ [1.4] 3.5.6 A free message broker

19 IPv4 4 Internet Protocol version 4. IPv4 addresses may be written in
any notation expressing a 32-bit integer value, but for human
convenience, they are most often written in the dot-decimal
notation, which consists of four octets of the address expressed
individually in decimal and separated by periods.

20 IPv6 6 Internet Protocol version 6. IPv6 addresses are represented as
eight groups of four hexadecimal digits separated by colons, for
example 2001:0db8:85a3:0042:1000:8a2e:0370:7334

http://en.wikipedia.org/wiki/Dot-decimal_notation
http://en.wikipedia.org/wiki/Dot-decimal_notation
http://en.wikipedia.org/wiki/Decimal
http://en.wikipedia.org/wiki/Full_stop
http://en.wikipedia.org/wiki/Hexadecimal

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

25 | P a g e

2.2 Single-sig Transaction Management SubSystem
2.2.1 High Level of STrxMSS Architecture
The Single-sig Transaction Management System (STrxMSS): implements main business logic related to Btc
Wallets, Btc Single-sig Transactions, Private/Public key pairs, Warm Storage. All the requests from eWallet
Web App. are coming to STrxMSS via RESTful Web Services. STrxMSS involves other systems (DmnCS and
MntS) to fulfil the request. STrxMSS uses Shared DB data and Shared libraries.
The diagram below (Pic. 2.2.1) shows the high level architecture of the proposed solution.

Pic. 2.2.1

2.2.2 Layers of STrxMSS Architecture

The STrxMSS consists of three layers:

- Load Balancing Layer

- Business Layer

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

26 | P a g e

- Databases Layer

Load Balancing Layer consists of multiple NGINX instances which are used as reverse proxy running on
separate nodes. The synchronization between NGINX instances for handling failover is done using
“Keepalived” utility. All the incoming HTTPS requests will be coming to Load Balancing Layer. Load balancer
will redirect the request to appropriate Apache Tomcat Server instance via HTTP.

Business Layer consists of multiple instances of STrxMSS Java Web Application deployed on Apache
Tomcat Server running on separate nodes. STrxMSS Java Web Application consists of:

- RESTful Web Service

- Transaction Management Component (TrxMC)

- Keys Management Component (KeysMC)

STrxMSS Web Application is using CW API, 4S API, MGC API and ECDSA API as java libraries in the
application build path.
STrxMSS is using RNG Hardware as random number generator.
STrxMSS Business Layer provides integration with MQs Layer to asynchronously interact with Monitoring
System. STrxMSS Business Layer integrated with DBs Layer to store transactions and keys data. STrxMSS
Business Layer is using data from shared DBs.

Databases Layer consists of three sets of DBs:

- Databases related to KeysMC business logic
- Databases related to TrxMC business logic
- Shared Databases related to IntDS errors and scripts types logic

The diagram below (Pic. 2.2.2) shows the principal architecture of the STrxMSS.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

27 | P a g e

Pic. 2.2.2

2.2.3 Transaction Management Component
Transaction Management Component (TrxMC) provides core functionality related to Btc wallets balance
and transactions.

1) TrxMC is integrated with KeysMC to sign transactions or create new Btc address for user wallet.
2) TrxMC fulfil requests to the Daemon Core System according to received requests from RESTful Web
Service.
3) TrxMC creates response for RESTful Web Service according to request business logic.
4) TrxMC asynchronously interact with Monitoring System via MQs Layer. There are two main interactions:

- Sending of messages about new created transactions and Btc addresses which should be monitored.

This is done using “strxmss_to_mnts_new_trxs” and “strxmss_to_mnts_new_btcaddr” queues in

message broker.

- Receiving of messages about transactions to be monitored for confirmations from

“mnts_to_strxmss_inb_trxs”, “mnts_to_strxmss_reject_msg” and “mnts_to_strxmss_outb_trxs”

queues.

MQs specification is described in “MQs Layer”.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

28 | P a g e

5) TrxMC is integrated with DB Layer which consists of several nodes. Each DB node consists of one
Database:

- “trx_management” DB stores data related to Btc wallets balances, Btc transactions, etc.

6) TrxMC provide “Warm Storage” functionality.

Warm Storage

IntDS will implement “Freezing Funds” solution according to BIP-0065 [2.24]. User will transfer BTC funds
from a Wallet to the new Wallet’s BtcAddress with future unlocking date time in the Trx. Funds of this Trx
will be frozen in the block chain without possibility to spend it until unlocking date.

Note: 1. Current project stage will implement “Warm Storage” functionality only in the GUI level by using
IS_LOCKED boolean flag.
2. Back-end “Warm Storage” functionality will be developed and implemented in the future stage of
project, when BIP-0065 will be approved from the Draft status.

Under construction…

The difference between “Cold Storage” and “Warm Storage” is:

“Warm Storage” temporarily stores user’s funds and gives them back to the user when desired.

“Cold Storage” does the same. However it implements many more levels of security. Ex. private keys of 5 different

people, required to sign a particular transaction at a particular time in a pre-defined physical location. This can (&

most probably will) be an offline system with high level of physical security.

2.2.4 Keys Management Component

Keys Management Component (KeysMC) provides functionality:

- to generate private key from mnemonic seed

- to generate public key and Btc address

- to securely store mnemonic seed parts

- to sign transactions

KeysMC is integrated with DB Layer which consists of several nodes. Each DBs node consists of one
Database:

- “mnm_see” DB stores System’s parts of mnemonic seed

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

29 | P a g e

Each mnemonic seed part received by using Shamir’s Secret Sharing Scheme [3.4]. The whole seed can be
restored by using user’s parts with system’s parts. User’s parts of seed will be unknown for IntDS till user
insert it via GUI of external system. Private Key can be restored from the whole seed.

2.2.5 RESTful Web Sevice
All the requests from other external systems are coming to the STrxMSS via RESTful Web Service. The
interface implementation must satisfy RESTful specification requirements. RESTful Web Service will return
JASON objects according to other systems requests. The description of public API provided by STrxMSS is
described in “Single-sig Transaction Management SubSystem Interface”

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

30 | P a g e

2.3 Accounting Transaction Management SubSystem
This point can be done in the scope of future development. Will need some researching activity.

2.4 Bank Transaction Management SubSystem
This point can be done in the scope of future development. Will need some researching activity.

2.5 Exchange Transaction Management SubSystem
This point can be done in the scope of future development. Will need some researching activity.

2.6 Message Transaction Management SubSystem
This point can be done in the scope of future development. Will need some researching activity.

2.7 Contracts Management SubSystem
This point can be done in the scope of future development. Will need some researching activity.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

31 | P a g e

2.8 Monitoring System

The Monitoring System (MntS) consists of Business Layer and DBs Layer.

Business Layer consists of Multithread Java Application which fulfil requests periodically to the Daemon
Core System for receiving data about current Block Chain situation and transactions. There are two types
of threads which should implement business logic of monitoring.
Block Chain monitoring threads:

- Out. Thread monitors Outbound transactions in the Block Chain
- Inb. Thread monitors Inbound transactions in the Block Chain
- Sync. Thread monitors the sync and download of the blockchain
- Sys. Start Thread monitors the building of local blockchain when system starts for the first time.

General monitoring thread:
- Log Thread monitors log files of Daemon Core related to P2P Reject messages.

Sub systems monitoring threads:

- STrxMSS Thread monitors the receiving of messages from STrxMSS and adds data into
“trx_monitoring” DB (tables with “STRXMSS_” name prefix)

- ATrxMSS Thread monitors the receiving of massages from ATrxMSS and adds data into
“trx_monitoring” DB (tables with “ATRXMSS_” name prefix)

- BTrxMSS Thread monitors the receiving of massages from BTrxMSS and adds data into
“trx_monitoring” DB (tables with “BTRXMSS_” name prefix)

- ETrxMSS Thread monitors the receiving of massages from ETrxMSS and adds data into
“trx_monitoring” DB (tables with “EATRXMSS_” name prefix)

- MTrxMSS Thread monitors the receiving of massages from MTrxMSS and adds data
“trx_monitoring” DB (tables with “MTRXMSS_” name prefix)

- ContrMSS Thread monitors the receiving of massages from ContrMSS and adds data into
“trx_monitoring” DB (tables with “CONTRMSS_” name prefix)

MntS Business Layer provides integration with MQs Layer to asynchronously interact with each sub system.
There are two main interactions:

- Sending of messages about Inbound/Outbound transactions to be monitored for confirmations.

- Receiving of messages from each sub system about new created transactions and Btc addresses

which should be monitored.

Out. and Inb. threads validate any new transactions which were received from block chain before sending
data into MQ for each sub system. MQs specification is described in “MQs Layer”.

Databases Layer consists of two sets of DBs:

- Databases related to MntS business logic which consists of several nodes. Each DB node has
“trx_monitoring” DB.

- Shared Databases related to IntDS errors and scripts types logic

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

32 | P a g e

The diagram below (Pic. 2.8.1) shows the principal architecture of the MntS.

Pic. 2.8.1

2.9 Daemon Core System
The Daemon Core System (DmnCS) provides functionality to synchronize with P2P network. The DmnCS
consists of two layers:

- DmnCS Instances Layer

- Load Balancing Layer

DmnCS Instances Layer provides core functionality to synchronize with P2P network. It consists of multiple
DmnCS instances running on separate nodes. Each of the DmnCS instances includes:

- FOS Daemon Core Component (DmnCC) which is master part of bitcoind

- Wrapper of DmnCC which is RESTful Web Service deployed onto Tomcat Application Server

Load Balancing Layer consists of multiple NGINX instances which are used as reverse proxy running on
separate nodes. The synchronization between NGINX instances for handling failover is done using
“Keepalived” utility. All the incoming requests will be coming to Load Balancing Layer. Load balancer will
redirect the request to appropriate daemon instance.

The diagram below (Pic. 2.9.1) shows the principal architecture of the Daemon Core System.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

33 | P a g e

Pic. 2.9.1

2.9.1 FOS Daemon Core Component
FOS Daemon Core Component (DmnCC) is master part of FOS C++ bitcoind application. DmnCC should have

part of OS bitcoind application functionality related to communications with P2P network. All functionality

related to private/public keys creation is moved into KeysMC of STrxMSS or other sub-system. DmnCC does

not have private/public keys creation logic anymore. DmnCC should care that new system transactions will

be injected into Block Chain via Company Daemon Miner rather than via randomly found unknown Miner.

Note: There is parallel implementation of FOS Daemon (BIP1001) “Bitcoin XT” [2.20]. The capacity of block

is 8Mb instead of 1Mb. This is not in the scope of current design. It should be considered in future project

stages.

2.9.2 Wrapper of Daemon Core Component
Wrapper of Daemon Core Component is RESTful Web Service deployed onto Tomcat Application Server.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

34 | P a g e

All the requests from MntS and STrxMSS systems are coming to the Wrapper. The interface

implementation must satisfy RESTful specification requirements. RESTful Web Service will return JASON

objects according to systems requests. API repeats main functions of FOS Daemon Core Component. The

description of public API provided by Wrapper is described in “Daemon Core System Interface”.

2.10 Shared Libraries
2.10.1 Common Ware API
Common Ware API (CW API) is a Java Application: commonWareAPI.jar file. CW API should be included in

the class path of the IntDS Java Applications as common library.

The table below describes CW API packages structure.

Package name Description Classes Classes Description
com.cwapi.support classes responsible for

support and services

EmailSender Class allows the sending of

simple text email.

EmailSender class used

JavaMail 1.4.7 API (mail.jar).

API is licensed under the

CDDL v1.1 and GPU v2 with

Classpath Exception.

LogWriter Class writes records to a log

file of a different specified

type.

PropertyLoader Class loads properties from

configuration file:

IntDSConfig.properties

Constants Class holds constants for this
package.

com.cwapi.utils shared utilities classes DateTimeUtils Class holds date and time

utilities.

StringUtils Class holds string utilities.

TypeConvertor Class holds type casting and
conversion utilities.

Utils Class holds generic utilities.

com.cwapi.hashfnc classes support different
hash functions

SHA256 Class holds converters to a
hash by using SHA256 and
SHA1 function.

RIPEMD160 Class holds converters to a
hash by using RIPEMD160
function.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

35 | P a g e

Base58 Class holds converters to
Base58 and Base58Check
encoding

Under construction.

2.10.2 Shamir’s Secret Sharing Scheme API
Shamir’s Secret Sharing Scheme [3.4] API (4S API) is a Java Application: ssssAPI.jar file. The table below

describes two main methods of 4S API.

Method
Name

Input Parameters Return Value Description

split secret (String),
N (int) – number of total pieces,
N=3 by default
K (int) – number of pieces for
restoring the Secret, K < N, K=2 by
default

JASON Object{
“N”: (int) number of total pieces,
“K”: (int) number of pieces for restoring
Secret,
“modulus”: (int) random modulus for
restoring the Secret,
“partsArray”: (JASON Array) (
{“ind”: 1, “arrValue”: “somevalue1”},
{“ind”: 2, “arrValue”: “somevalue2”},
…
{“ind”: K, “arrValue”: “somevalueK”},
), where array size is K
}

A Secret is divided into
"N" pieces of data.
Any "K" of those pieces
can be used to
reconstruct the Secret.

merge N (int) – number of total pieces,
K (int) – number of pieces for
restoring the Secret,
modulus (int) - random modulus
for restoring the Secret
partsArray (ArrayList<SSSSPoint>) -
array list of the Secret pieces,
where size is K, SSSSPoint is Object
with members:
xValue (int) – X coordinate and
integer started from 1
yValue (String) - Y coordinate in the
string representation

Secret (String) Function reconstructs
the Secret from pieces.

2.10.3 ECDSA API
Elliptic Curve Digital Signature Algorithm API (ECDSA API) is Java Application: ecdsaAPI.jar file.

The table below describes functions of ECDSA API business logic.

Function Name Input Parameters Return Value Description
Private Key generator -- Private Key (int) - 256-bit

integer (BigInteger in Java)
in the range [1, 2256]

Function generates
randomly 256-bit integer in
the range [1, 2256]

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

36 | P a g e

Deterministic Private
Key maker

Mnemonic Seed (String) – string
consists of mnemonic code + ASCII-
coded number

Private Key (int) - 256-bit
integer (BigInteger in Java)
in the range [1, 2256]

Function makes 256-bit
integer in the range [1, 2256]
by using deterministic
approach -
SHA256(Mnemonic Seed)

Points Additions ECDSAPoint P(x1, y1) – ECDSAPoint
object (java bean) with affine
coordinates x1 and y1; ECDSAPoint
P(x2, y2) – ECDSAPoint object (java
bean) with affine coordinates x2
and y2. Arguments are points on
the elliptic curve

ECDSAPoint P(x3, y3) -
ECDSAPoint object (java
bean) with affine
coordinates x3 and y3,
which is point on the elliptic
curve and result of points
additions operation.

Function implements
“Points Additions” formula.
Function produce P(x3, y3)
as result of points additions

Points Doubling ECDSAPoint P(x1, y1) – ECDSAPoint
object (java bean) with affine
coordinates x1 and y1, which is
point on the elliptic curve

ECDSAPoint P(x3, y3) -
ECDSAPoint object (java
bean) with affine
coordinates x3 and y3,
which is point on the elliptic
curve

Function implements
“Points Doubling” formula.
Function produce P(x3, y3)
as result of point doubling

Unified formula ECDSAPoint P(x1, y1) – ECDSAPoint
object (java bean) with affine
coordinates x1 and y1; ECDSAPoint
P(x2, y2) – ECDSAPoint object (java
bean) with affine coordinates x2
and y2. Arguments are points on
the elliptic curve

ECDSAPoint P(x3, y3) -
ECDSAPoint object (java
bean) with affine
coordinates x3 and y3,
which is point on the elliptic
curve

Function implements
“Unified” formula which can
be used instead “Points
Additions” or “Points
Doubling”.

Simultaneous Scalar
Multiplication

ECDSAPoint P(x1, y1) – ECDSAPoint
object (java bean) with affine
coordinates x1 and y1; ECDSAPoint
P(x2, y2) – ECDSAPoint object (java
bean) with affine coordinates x2
and y2. P(x1, y1) and P(x2, y2) are
points on the elliptic curve
k (int, BigInteger in Java) –
multiplication number for point
P(x1, y1);
l (int, BigInteger in Java) -
multiplication number for point
P(x2, y2)

ECDSAPoint P(x3, y3) -
ECDSAPoint object (java
bean) with affine
coordinates x3 and y3,
which is point on the elliptic
curve and result of
Simultaneous Scalar
Multiplication operation.
P(x3, y3) = k P(x1, y1) + l
P(x2, y2)

Function implements
Simultaneous Scalar
Multiplication according to
Straus's algorithm

Compressed Pub Key
maker

privKey (int, BigInteger in Java) –
Private Key, 256-bit integer in the
range 1<= PrvKey<=2256

Public Key (String) -
hexadecimal string of Pub
Key in the Compressed form

Function makes
compressed form of Public
Key for the script

Uncompressed Pub Key
maker

privKey (int, BigInteger in Java) –
Private Key, 256-bit integer in the
range 1<= PrvKey<=2256

Public Key (String) -
hexadecimal string of Pub
Key in Uncompressed form

Function makes
uncompressed form of
Public Key for the script

Generate Signature message (byte[]) - the SHA-1 hash
of the message/transaction that
should be signed;
ECDSAPrivateKey privKey – private
key

(r, s) (BigInteger[]{r, s}) -
Signature as big integer pair
(r, s)

Function generates a
signature as a pair of
integers for the given
message/transaction using
the private key.

Generate DER-encoded
Signature

message (byte[]) - the SHA-1 hash
of the message/transaction that
should be signed;

sig (String) -
DER-encoding of signature
par (r, s) for the script

Function generates a DER-
encoded signature for the
given message/transaction
using the private key.

https://en.wikipedia.org/w/index.php?title=Straus%27s_algorithm&action=edit&redlink=1

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

37 | P a g e

ECDSAPrivateKey privKey – private
key

Signature Verification (r, s) (BigInteger[]{r, s}) -
Signature as big integer pair (r, s);
message (byte[]) - the SHA-1 hash
of the message/transaction for
which signature should be verified;
ECDSAPoint Q(x, y) – Public Key,
ECDSAPoint object (java bean) with
affine coordinates x and y.

Verification flag (boolean) –
true if signature is valid and
corresponds to given Public
Key, otherwise false

Function verify that given
signature match the given
Public Key.

Signature Verification in
scripts

pubKeyStr (String) – Public Key in
the Script representation;
sigStr (String) – DER-encoded
signature in the Script
representation;
message (byte[]) - the SHA-1 hash
of the message/transaction for
which signature should be verified

Verification flag (boolean) –
true if signature is valid and
corresponds to given Public
Key, otherwise false

Function verify that given
signature match the given
Public Key. The input
parameters are given in the
Script representation.

2.10.4 Mnemonic Code Generator API
Mnemonic Code Generator API is a Java Application: mnmCodeAPI.jar file.

Function Name Input Parameters Return Value Description
Generate Mnemonic
Code as string array

• Language (String) – 3
chars string to select what
language wordlist to use,
English as “eng” by
default

• no_of_words (int) –
number of words
required in the mnemonic
code in the range 12 to
24. Default number is 12.
For validations, refer
section 6.1.1

mnm_code (String array) –
Array of strings containing
the required number of
words from the selected
wordlist

Generates a sequence of words as
part of the mnemonic code from a
pre-defined wordlist.

Generate Mnemonic
Code as string

• Language (String) – 3
chars string to select what
language wordlist to use,
English as “eng” by
default

• no_of_words (int) –
number of words
required in the mnemonic
code in the range 12 to
24. Default number is 12.
For validations, refer
section 6.1.1

mnm_code (String) – String
containing the required
number of words from the
selected wordlist

Generates a sequence of words as
part of the mnemonic code from a
pre-defined wordlist.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

38 | P a g e

2.11 Configurations and Logs

2.11.1 Main Configuration File

MntSConfig.properties

Configurable parameters must be included:

Company fee: 7000 Satoshi =0.00007 Btc

Change can not be less than 546 Satoshi = 0.00000546 Btc

MQ Consumer Thread sleep time in milliseconds.

Under construction…

2.11.2 Log types and rules
The LogWriter class (see CW API) responsible for creation of log files for every java components. The

location of log files directory is the same as application location:

../[application location]/..

../CFGDATA/LogsDir/*.log

There are different types of logs depending on function logic. Different logs can be recognized by

application or component prefix and log type.

Log file name = [Application or Component Prefix]-[Log Type]current.log

List of logs:

Component
Prefix

Log Type Log File Description

MntS ERROR MntS-ERRORcurrent.log Monitoring System general errors logs

MntS DEBUG MntS-DEBUGcurrent.log Monitoring System general debug logs.
These logs will be written if debug setting is
switched on in the MntSConfig.properties

MntS INFO MntS-INFOcurrent.log Monitoring System general information
logs

MntS DB-ERR MntS-DB-ERRcurrent.log Monitoring System DB errors logs
(connections etc.)

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

39 | P a g e

MntS MQ-ERR MntS-MQ-ERRcurrent.log Monitoring System MQ errors logs
(connections, message was not sent etc.)

STrxMSS ERROR STrxMSS-ERRORcurrent.log Single-sig Trx Management SubSystem
general errors logs

STrxMSS DEBUG STrxMSS-DEBUGcurrent.log Single-sig Trx Management SubSystem
general debug logs. These logs will be
written if debug setting is switched on in
the MntSConfig.properties

STrxMSS INFO STrxMSS-INFOcurrent.log Single-sig Trx Management SubSystem
general information logs

STrxMSS DB-ERR STrxMSS-DB-ERRcurrent.log Single-sig Trx Management SubSystem DB
errors logs (connections etc.)

STrxMSS MQ-ERR STrxMSS-MQ-
ERRcurrent.log

Single-sig Trx Management SubSystem MQ
errors logs (connections, message was not
sent etc.)

MCGAPI ERROR MCGAPI-ERRORcurrent.log Mnemonic Code Generator API general
errors logs

MCGAPI DEBUG MCGAPI-DEBUGcurrent.log Mnemonic Code Generator API general
debug logs. These logs will be written if
debug setting is switched on in the
MntSConfig.properties

MCGAPI INFO MCGAPI-INFOcurrent.log Mnemonic Code Generator API general
information logs

KeysMC ERROR KeysMC-ERRORcurrent.log Keys Management Component general
errors logs

KeysMC DEBUG KeysMC-DEBUGcurrent.log Keys Management Component general
debug logs. These logs will be written if
debug setting is switched on in the
MntSConfig.properties

KeysMC INFO KeysMC-INFOcurrent.log Keys Management Component general
information logs

KeysMC DB-ERR KeysMC-DB-ERRcurrent.log Keys Management Component DB errors
logs (connections etc.)

CWAPI ERROR CWAPI-ERRORcurrent.log Common Ware API general errors logs

CWAPI DEBUG CWAPI-DEBUGcurrent.log Common Ware API general debug logs.
These logs will be written if debug setting is
switched on in the MntSConfig.properties

CWAPI INFO CWAPI-INFOcurrent.log Common Ware API general information
logs

CWAPI DB-ERR CWAPI-DB-ERRcurrent.log Common Ware API DB errors logs
(connections etc.)

ECDSA API ECDSA-
ERR

ECDSA-ERRcurrent.log ECDSA API errors logs

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

40 | P a g e

4S API 4SAPI-ERR 4SAPI-ERRcurrent.log 4S API errors logs

Each record in the log file will be separate line. The format of the record will be as follows:

Timestamp in format “yyyyMMddHHmmss”: <Type of problem>: <Class name>.<Method name> : <Log

message>

Example:

20151228142020: ERROR: LogWriter().log: Error writing to log file “KeysMC-INFOcurrent.log”

If the log file becomes larger than “maximum log file size” (1000000 bytes by default) it is renamed

with an archive date/time and new log file is started:

Archived Log file name = [Application or Component Prefix]-[Log Type][timestamp].log

Additional debug lines can be written in the any type of logs if debug setting is switched on in the

Config.properties

Additional new types of logs can be created in development process if new type is logically needed.

2.12 MQs Layer
Naming rules in the prefixes of queues:

The queue name should be made according to formula:

[Sub-system abbreviation of a Producer]_to_[Sub-system abbreviation of a Consumer]_[object/item should

be monitored]

Sub systems Queues prefixes:
- STrxMSS Queues: “strxmss_to_”
- ATrxMSS Queues: “atrxmss_to_”
- BTrxMSS Queues: “btrxmss_to_”
- ETrxMSS Queues: “etrxmss_to_”
- MTrxMSS Queues: “mtrxmss_to_”
- ContrMSS Queues: “contrmss_to_”
- MntS Queues: “mnts_to_”

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

41 | P a g e

Sub-systems and monitoring system send objects with different properties. The object needs to be

serialised into a byte array so that it can be included in the message body. The serialised object needs to be

deserialised in the receiving part. See example on [1.13].

2.12.1 MQ Specification for Single-sig Transaction Management SubSystem
STrxMSS is producer MntS is consumer in this scenario. Sending of messages about new created Outbound

transactions and Btc addresses which should be monitored is done by using “strxmss_to_mnts_new_trxs”

and “strxmss_to_mnts_new_btcaddr” queues in message broker.

“strxmss_to_mnts_new_trxs” queue: object specification of message:

Field Title Java Type Length Description

“strxmss_to_mnts_new_btcaddr” queue: object specification of message:

Field Title Java Type Length Description

Under construction…

2.12.2 MQ Specification for Accounting Transaction Management SubSystem

This point can be done in the scope of future development. Will need some researching activity.

2.12.3 MQ Specification for Bank Transaction Management SubSystem

This point can be done in the scope of future development. Will need some researching activity.

2.12.4 MQ Specification for Exchange Transaction Management SubSystem

This point can be done in the scope of future development. Will need some researching activity.

2.12.5 MQ Specification for Message Transaction Management SubSystem

This point can be done in the scope of future development. Will need some researching activity.

2.12.6 MQ Specification for Contracts Management SubSystem

This point can be done in the scope of future development. Will need some researching activity.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

42 | P a g e

2.12.7 MQ Specification for Monitoring System
MntS is producer STrxMSS is consumer in this scenario.

Inbound transactions queue in message broker is “mnts_to_strxmss_inb_trxs”. Object specification of

message:

Field Title Java
Type

Length Description

daemonTxidHash String

confirmations int

walletId

btcAddress

Outbound transactions queue in message broker is “mnts_to_strxmss_outb_trxs”. Object specification of

message:

Field Title Java Type Length Description
daemonTxidHash String

confirmations int

blockHash String

Log files and sending reject messages queue in message broker is “mnts_to_strxmss_reject_msg”. Object

specification of message:

Field Title Java Type Length Description
daemonTxidHash String

rejectMsgId int

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

43 | P a g e

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

44 | P a g e

3. Databases
IntDS does not use any ORM frameworks and JPA to interact with DBs for security and performance

reasons. IntDS uses JDBC approach and DAO pattern instead.

3.1 Single-sig Transaction Management SubSystem DBs
The Single-sig Transaction Management SubSystem (STrxMSS) has 2 Databases. “mnm_seed” interact with

Keys Management Component. “trx_management” DB interact with Transaction Management

Component.

3.1.1 Transaction Management Component DBs Diagram

“trx_management” DB consists of 11 tables and stores transactions data. The diagram below (Pic.

3.1.1) shows the DB structure.

Update frequency: fast changing data.

Pic. 3.1.1

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

45 | P a g e

3.1.2 Transaction Management Component DBs Description

1) “trx_management” DB tables description:

1. MQ_OBJECTS table holds binary objects of messages which were not sent to MQ for MntS in time

because message producer had error. Separate thread should send these messages later for MntS.

MQ_OBJECTS table consists of below fields:

Field Title DB Type Java type Not
Null

Description

MQ_OBJECT_ID bigint Long true Primary Key, Message
object identifier.

MQ_OBJECT bytea byte
use getBytes(), setBytes(),
getBinaryStream(), or
setBinaryStream() methods

true Binary object of message
which should be sent to
MQ

MQ_NAME varchar(45) String true Queue name

DATE_CREATED timestamp(6) String true Date-time of record
creation

DATE_SENT timestamp(6) String false Date-time when thread
sends this object to MQ

MQ_OBJECTS table has indexes:

Index Name Fields

PRIMARY MQ_OBJECT_ID

2. INPUTS table holds data of transaction Inputs. Inputs - records which reference the funds, messages,

hash info from other previous transactions.

INPUTS table consists of below fields:

Field Title DB Type Java type Not
Null

Description

INPUT_ID UUID java.util.UUID ->
setObject/getObject
in JDBC

true Primary Key, the Input
identifier.

TRX_ID UUID java.util.UUID ->
setObject/getObject
in JDBC

true Transaction identifier of
the STrxMSS, PK from
TRANSACTIONS table,
dependency with System
transaction

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

46 | P a g e

TEMP_TRX_ID UUID java.util.UUID ->
setObject/getObject
in JDBC

false Temporary Trx identifier,
PK from
TEMP_OUTB_TRXS table,
dependency with data of
temporary outbound
transaction. Zero by
default.

INPUT_INDEX int int true Index in the Inputs array

PREV_DAEMON_TXID_HASH text String true Identifier of the prior
referenced transaction
(“txid”: hash in hex of
signed transaction).
Transaction id is received
from Block Chain via the
DmnCS. A hash of
completed transaction
which allows other
transactions to spend its
outputs. Maximum size –
1,000,000

VOUT_INDEX int int true Index of valid unspent
Output in the referenced
transaction. The
referenced transaction
(DAEMON_TXID_HASH)
may have more than one
Output so the index is
used to identify which
Output is being “spent”
for System transaction
(TRX_ID). Zero by default.

VOUT_BTC_VALLUE numeric BigDecimal true Btc amount of the valid
unspent Output in the
referenced transaction
(DAEMON_TXID_HASH).
Output has index =
VOUT_INDEX. Zero by
default.

SCRIPT_SIG_HASH varchar(300) String true Current Input’s scriptSig
value in hash as part of
transaction hash string

SCRIPT_TYPE_ID int int true Script pair type Identifier.
PK from
SCRIPT_PAIRS_TYPES

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

47 | P a g e

table, dependency with
script pair type from
“shared_data” DB. Zero by
default. Script pair types
with descriptions can be
found in the Appendix E

INPUTS table has foreign keys:

Foreign Key Name Referenced Table Field Referenced Field

TRX_ID_INPUTS_FK TRANSACTIONS TRX_ID TRX_ID

TEMP_TRX_ID_INPUTS_FK TEMP_OUTB_TRXS TEMP_TRX_ID TEMP_TRX_ID

INPUTS table has unique indexes:

Index Name Field

INPUT_ID_UNIQUE INPUT_ID

DAEMON_TXID_UNIQUE DAEMON_TXID

INPUTS table has indexes:

Index Name Fields

PRIMARY INPUT_ID

TRX_ID_INPUTS_FK_IDX TRX_ID

TEMP_TRX_ID_INPUTS_FK_IDX TEMP_TRX_ID

3. OUTPUTS table holds data of transaction Outputs. Outputs - records which determine the new owner of

the transferred Bitcoins, and which will be referenced as Inputs in future transactions as those funds are

respent. Outputs are tied to transaction identifiers (TXIDs), which are the hashes of signed transactions.

OUTPUTS table consists of below fields:

Field Title DB Type Java type Not Null Description

OUTPUT_ID UUID java.util.UUID ->
setObject/getObject
in JDBC

true Primary Key, the Output
identifier. Unique

TRX_ID UUID java.util.UUID ->
setObject/getObject
in JDBC

true Transaction identifier of
the STrxMSS, PK from
TRANSACTIONS table,
dependency with System
transaction

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

48 | P a g e

TEMP_TRX_ID UUID java.util.UUID ->
setObject/getObject
in JDBC

false Temporary Trx identifier,
PK from
TEMP_OUTB_TRXS table,
dependency with data of
temporary outbound
transaction. Zero by
default.

OUTPUT_INDEX int int true Index in the Outputs array

BTC_VALLUE numeric BigDecimal true Transferred Bitcoins
amount

BTC_ADDRESS varchar(50) String true Bitcoin address is the
recipient of the funds.

IS_SPENT bool boolean true Each Output from one
transaction can only ever
be referenced once by an
input of a subsequent
transaction. This field is
true (1) if Output was used
by an input of a
subsequent confirmed
transaction, otherwise
false (0). Default value is
false (0).

DATE_SPENT timestamp(6) String false Null by default. Date and
time when Output was
spent.

IS_SYSTEM_FEE bool boolean true System fee for transaction
is sent to System Btc
address as one of
transaction’s Output. This
output is a system
transaction fee if this field
is true (1), otherwise false
(0). Default value is false
(0).

IS_CHANGE bool boolean true User change should be
send back to User Wallet.
This Output is User change
if this field is true (1),
otherwise false (0). Default
value is false (0).

SPENT_BY_INPUT_ID UUID java.util.UUID ->
setObject/getObject
in JDBC

false Input identifier if this
Output was spent by
STrxMSS transaction, PK

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

49 | P a g e

from INPUTS table,
dependency with Input of
Outbound transaction.

SCRIPT_PUB_KAEY_HASH varchar(50) String true Current Output’s
scriptPubKey value in hash
as part of transaction hash
string

PUBK_SCRIPT_TYPE_ID int int true Script pair type Identifier.
PK from
SCRIPT_PAIRS_TYPES table,
dependency with script
pair type from
“shared_data” DB. Zero by
default. Script pair types
with descriptions can be
found in the Appendix E

REDEEM_SCRIPT_HASH varchar(50) String false Current Output’s
redeemScript value in 20-
byte hash. Redeem script
value is required if the
funds is spending from
multi-sig btc address,
otherwise null

OUTPUTS table has foreign keys:

Foreign Key Name Referenced Table Field Referenced Field

TRX_ID_OUTPUTS_FK TRANSACTIONS TRX_ID TRX_ID

BY_INPUT_ID_INPUTS_FK INPUTS SPENT_BY_INPUT_ID INPUT_ID

TEMP_TRX_ID_OUTPUTS_FK TEMP_OUTB_TRXS TEMP_TRX_ID TEMP_TRX_ID

OUTPUTS table has indexes:

Index Name Fields

PRIMARY OUTPUT_ID

TRX_ID_OUTPUT_FK_IDX TRX_ID

BY_INPUT_ID_INPUTS_FK_IDX SPENT_BY_INPUT_ID

TEMP_TRX_ID_OUTPUTS_FK_IDX TEMP_TRX_ID

4. SYSTEM_BTC_ADDRESSES table holds Btc addresses data and mapping with data from WALLETS table.

Single-sig Btc address is a 160-bit hash of the public portion of a public/private ECDSA key pair. Single-sig

http://en.wikipedia.org/wiki/Elliptic_Curve_DSA

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

50 | P a g e

Btc address is generated by STrxMSS. (Note: Table holds only Single-sig Btc addresses. Multi-sig addresses

are not in the scope of STrxMSS. The first digit in the Multi-sig address is a “3” to validate data.).

SYSTEM_BTC_ADDRESSES table consists of below fields:

Field Title DB Type Java type Not Null Description

BTC_ADDRESS varchar(50) String true Primary key. Btc address hash
string. Bitcoin addresses are
used to receive payments,
message, hash info.

PUBLIC_KEY varchar(100) String true Primary key. Public key string
that corresponds to a private
key, but does not need to be
kept secret. A public key can be
used to determine if a signature
is genuine without requiring
the private key to be divulged.

WALLET_ID UUID java.util.U
UID ->
setObject/
getObject
in JDBC

true Wallet identifier, PK from
WALLETS table, dependency
with wallets.

DATE_CREATED timestamp(6) String true Date-time of record creation

IS_USED bool boolean true This field is true (1) if Btc
address was used in the
Outbound transaction,
otherwise false (0). Default
value is false (0).

IS_WARM_STORAGE bool boolean true This field is true (1) if Btc
address is used in the “Warm
Storage” output transaction,
otherwise false (0). This
BTC_ADDRESS data should be
equal to data in
COLD_STORAGE_TRXS_OUT
table, BTC_ADDR_TO field in
this case. Default value is false
(0).

SEQUENCE_NUMBER bigint Long true Sequence Number of every Btc
address for particular wallet.
This number will be used to
generate private key. Default
value is 0.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

51 | P a g e

SYSTEM_BTC_ADDRESSES table has foreign keys:

Foreign Key Name Referenced Table Field Referenced Field

WALLET_ID_SYS_BTC_ADDR WALLETS WALLET_ID WALLET_ID

SYSTEM_BTC_ADDRESSES table has indexes:

Index Name Fields

PRIMARY BTC_ADDRESS, PUBLIC_KEY

WALLET_ID_SYS_BTC_ADDR_IDX WALLET_ID

5. TEMP_OUTB_TRXS table holds data about temporary outbound transactions. IntDS creates new Trx by

several stages. There is a preparation stage which calculate Miner and company fee depending on Trx size.

Calculated fee should be included in Trx. External system should accept payment of fee or reject Trx. This

table holds new trx data till it is confirmed or rejected. Data will be deleted after that. Data will be copied

into TRANSACTIONS table if External system will confirm Trx.

TEMP_OUTB_TRXS table consists of below fields:

Field Title DB Type Java type Not Null Description

TEMP_TRX_ID UUID java.util.UUID ->
setObject/getObject
in JDBC

true Primary Key, the
Temporary outbound
transaction identifier.

EXTERNAL_TRX_ID UUID java.util.UUID ->
setObject/getObject
in JDBC

true Transaction identifier
from External system.
Maping between IntDS
and External system data

FROM_WALLET_ID UUID java.util.UUID ->
setObject/getObject
in JDBC

true Identifier of wallet from
which Btc funds will be
sent. PK from WALLETS
table, dependency with
wallets.

PRIORITY_FEE numeric BigDecimal false Fee was inserted by
External system, which
should be paid for this
transaction. Zero by
default.

MINER_FEE numeric BigDecimal false Miner’s fee is calculated
by IntDS depending on trx
size, which should be paid
for this transaction.
Currently 0.0001 Btc per
each 1 kByte. Zero if trx

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

52 | P a g e

size less than 1 kByte.
Zero by default.

INTDS_FEE numeric BigDecimal false IntDS’s fee is calculated by
IntDS depending on trx
size, which should be paid
for this transaction.
Currently 0.00007 Btc per
each 1 kByte. Zero if trx
size less than 1 kByte.
Zero by default.

TRX_RAW_SGN_DATA text String false Raw byte data of the
signed Transaction (hex-
encoded string) after
serialization.
Zero by default.

TRX_RAW_SGN_NOSERIAL text String false Raw byte data of the
signed Transaction (hex-
encoded string) before
serialization.

DATE_CREATED timestamp(6) String true Date-time of record
creation

DATE_UPDATED timestamp(6) String true Date-time of transaction
record last update

HAS_USER_CHANGE bool boolean true True (1) if one Output of
this transaction is User’s
change otherwise false
(0). Default value is false
(0).

TEMP_OUTB_TRXS table has foreign keys:

Foreign Key Name Referenced Table Field Referenced Field

TEMP_OUTB_TRX_WALLETS_FK WALLETS FROM_WALLET_ID WALLET_ID

TEMP_OUTB_TRXS table has indexes:

Index Name Fields

PRIMARY TEMP_TRX_ID

TEMP_OUTB_TRX_WALLETS_FK_IDX FROM_WALLET_ID

6. TRANSACTIONS table holds data about System transactions.

TRANSACTIONS table consists of below fields:

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

53 | P a g e

Field Title DB Type Java type Not Null Description

TRX_ID UUID java.util.UUID ->
setObject/getObject
in JDBC

true Primary Key, the
Transaction identifier.

DAEMON_TXID_HASH text String true Transaction Identifier is a
hash of completed
transaction which allows
other transactions to
spend its outputs.
Transaction Identifier is
received from Block Chain
via the DmnCS. Zero by
default. Maximum size -
1,000,000 chars

TRX_RAW_SGN_DATA text String true Raw byte data of the
signed Transaction (hex-
encoded string) after
serialization.
Zero by default.

TRX_RAW_SGN_NOSERIAL text String false Raw byte data of the
signed Transaction (hex-
encoded string) before
serialization.

DATE_CREATED timestamp(6) String true Date-time of record
creation

DATE_UPDATED timestamp(6) String true Date-time of transaction
record last update

CONFIRMATIONS int int true Number of new blocks in
Block Chain after the
transaction has been
included in the block and
block was published to the
network. Confirmations is
received from Block Chain
via the DmnCS. The
transaction should be
considered as confirmed if
it is a six number of blocks
deep. Zero by default.

BLOCK_HASH text String false Block Identifier is a hash
of block in which
transaction was included.
Maximum size - 2,000,000
chars

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

54 | P a g e

IS_OUTBOUND bool boolean true True (1) if transaction is
outbound trx otherwise
false (0). Default value is
true (1).

LOCK_TIME int int true The block number or
timestamp at which this
transaction is locked, or 0
if the transaction is always
locked. A non-locked
transaction must not be
included in blocks, and it
can be modified by
broadcast ting a new
version before the time
has expired. Default value
is zero.

IS_EVERY_OUTPUT_SPENT bool boolean true True (1) if every Outputs
of this transaction are
spent otherwise false (0).
Default value is false (0).

TRX-STATUS_ID int int true Transaction status
Identifier. PK from
TRX_STATUSES table,
dependency with
transaction statuses. Zero
by default.

HAS_USER_CHANGE bool boolean true True (1) if one Output of
this transaction is User’s
change otherwise false
(0). Default value is false
(0).

HAS_SYSTEM_FEE bool boolean true True (1) if one Output of
this transaction is IntDS
fee otherwise false (0).
Default value is false (0).

IS_REJECTED bool boolean true True (1) if this transaction
is rejected by blockchain
otherwise false (0).
Default value is false (0).

REJECT_MSG_ID int int false Rejection message
identity number, PK from
BTC_REJECTION_MSG
table, dependency with
blockchain rejection

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

55 | P a g e

messages from
“shared_data” DB.
Rejection messages with
descriptions can be found
in the Appendix M

MINER_FEE numeric BigDecimal false Bitcoins amount should be
paid as Miner fee. Zero by
default.

TRANSACTIONS table has foreign keys:

Foreign Key Name Referenced Table Field Referenced Field

TRX_STATUS_ID_TRX_STATUSES_FK TRX_STATUSES TRX_STATUS_ID TRX_STATUS_ID

TRANSACTIONS table has unique indexes:

Index Name Field

HEXSTR_BEFORE_SIGN_UNIQUE HEXSTR_BEFORE_SIGN

BLOCK_HASH_UNIQUE BLOCK_HASH

TRX_ID_UNIQUE TRX_ID

TRANSACTIONS table has indexes:

Index Name Fields

PRIMARY TRX_ID

TRX_STATUS_ID_TRX_STATUSES_IDX TRX_STATUS_ID

7. TRANSACTIONS_ERROR_CODES table is join table between TRANSACTIONS table and

INTDSYSTEM_ERROR_CODES table from “shared_data” DB. Dependency with IntDS error from

“shared_data” DB.

TRANSACTIONS_ERROR_CODES table consists of below fields:

Field Title DB Type Java type Not Null Description

TRX_ID UUID java.util.UUID ->
setObject/getObject
in JDBC

true Transaction identifier, PK
from TRANSACTIONS table

ERR_CODE_ID int int true Error code identity number,
PK from
INTDSYSTEM_ERROR_CODES
table, dependency with
IntDS error from
“shared_data” DB. Error

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

56 | P a g e

with descriptions can be
found in the Appendix L

DATE_CREATED timestamp(6) String true Date-time of record creation

TRANSACTIONS_ERROR_CODES table has foreign keys:

Foreign Key Name Referenced Table Field Referenced Field

TRX_ID_TRX_ERROR_CODES_FK TRANSACTIONS TRX_ID TRX_ID

TRANSACTIONS_ERROR_CODES table has indexes:

Index Name Fields

PRIMARY ERR_CODE_ID, TRX_ID

8. TRX_STATUSES table holds data about transaction statuses (see statuses list in the Appendix A).

TRX_STATUSES table consists of below fields:

Field Title DB Type Java type Not Null Description

TRX_STATUS_ID int int true Auto incremented, Primary
Key. Transaction status
identity number.

STATUS varchar(45) String true Transaction status name

STATUS_DESCR varchar(500) String true Status description

TRX_STATUSES table has unique indexes:

Index Name Field

STATUS_UNIQUE STATUS_NAME

TRX_STATUSES table has indexes:

Index Name Fields

PRIMARY TRX_STATUS_ID

9. WALLETS table holds data about Btc wallets.

WALLETS table consists of below fields:

Field Title DB Type Java type Not Null Description

WALLET_ID UUID java.util.UUID ->
setObject/getObject
in JDBC

true Primary Key, the Wallet
identifier.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

57 | P a g e

DATE_CREATED timestamp(6) String true Date-time of the record
creation.

DATE_UPDATED timestamp(6) String true Date-time of the record’s last
update

BTC_AVAILABLE_FUNDS numeric BigDecimal true Credit = Sum of unspent
Outputs of ‘confirmed’
Inbound transactions for Btc
addresses of this wallet.
Debit = Sum of Inputs of
Outbound transactions for
this wallet.
Btc available balance = Credit
- Debit. Default value =“0.0”.

BTC_BALANCE numeric BigDecimal true Credit = Sum of all Outputs
of ‘confirmed’ Inbound
transactions for Btc
addresses of this wallet.
Debit = Sum of Inputs of
‘confirmed’ Outbound
transactions for this wallet.
Btc balance = Credit - Debit.
Default value =“0.0”.

IS_SYSTEM_WALLET bool boolean true True (1) if wallet owner is
IntDS otherwise false (0).
Default value is false (0).

IS_LOCKED bool boolean true True (1) if wallet is locked
otherwise false (0). Default
value is false (0).

DATE_TO_UNLOCK timestamp(6) String false Date and time when wallet
will be unlocked.

10. WALLETS_OUTB_TRXS table is join table between WALLETS table and TRANSACTIONS table. This table

holds only Outbound transactions Identifieres.

WALLETS_OUTB_TRXS table consists of below fields:

Field Title DB Type Java type Not Null Description

WALLET_ID UUID java.util.UUID ->
setObject/getObject
in JDBC

true Wallet identifier, PK from
WALLETS table

TRX_ID UUID java.util.UUID ->
setObject/getObject
in JDBC

true Outbound transaction
identifier, PK from
TRANSACTIONS table

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

58 | P a g e

WALLETS_OUTB_TRXS table has foreign keys:

Foreign Key Name Referenced Table Field Referenced Field

TRX_ID_WALLETS_TRX_FK TRANSACTIONS TRX_ID TRX_ID

WALLET_ID_WALLETS_TRX_FK WALLETS WALLET_ID WALLET_ID

WALLETS_OUTB_TRXS table has indexes:

Index Name Fields

PRIMARY WALLET_ID, TRX_ID

TRX_ID_TRANSACTIONS_FK_IDX TRX_ID

11. WALLETS_INB_TRXS table is join table between WALLETS table and TRANSACTIONS table

WALLETS_INB_TRXS table consists of below fields:

Field Title DB Type Java type Not Null Description

WALLET_ID UUID java.util.UUID ->
setObject/getObject
in JDBC

true Wallet identifier, PK from
WALLETS table

TRX_ID UUID java.util.UUID ->
setObject/getObject
in JDBC

true Inbound transaction
identifier, PK from
TRANSACTIONS table. This
transaction is marked as
Outbound in
TRANSACTIONS table in
case user’s change or IntDS
fee.

WALLETS_INB_TRXS table has foreign keys:

Foreign Key Name Referenced Table Field Referenced Field

TRX_ID_WALLETS_INBTRX_FK TRANSACTIONS TRX_ID TRX_ID

WALLET_ID_WALLETS_INBTRX_FK WALLETS WALLET_ID WALLET_ID

WALLETS_INB_TRXS table has indexes:

Index Name Fields

PRIMARY WALLET_ID, TRX_ID

TRX_ID_WALLETS_INBTRX_FK_IDX TRX_ID

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

59 | P a g e

3.1.3 Keys Management Component DB Diagram
Keys Management Component has ”mnm_seed” DB. The diagram below shows DB table (see Pic. 3.1.3).

Pic. 3.1.3

Update frequency: not changing data. Size: records number = number of wallets.

Mnemonic Seed can be restored by using Modulus and some parts according to Shamir's Secret Sharing

Scheme [3.4]. ”mnm_seed” DB stores only system’s parts of mnemonic seeds.

Note: Seed will divided on the 3 parts for eWallet Web App. Seed can be restored by any 2 parts in this case.

3.1.4 Keys Management Component DBs Description

1) “mnm_seed” DB: MNM_SEED_PARTS table holds data about system’s parts of mnemonic seed.

MNM_SEED_PARTS table consists of below fields:

Field Title DB Type Java type Not
Null

Description

MNM_SEED_ID UUID java.util.UUID ->
setObject/getObject
in JDBC

true Primary key. Mnemonic seed
identifier.

WALLET_ID UUID java.util.UUID ->
setObject/getObject
in JDBC

true Primary key. Wallet identifier,
PK from WALLETS table in
“trx_management” DB

MODULUS varchar(255) String true Rundomly generated
Modulus value for restoring
of private key from any “N=
RESTORE_PARTS_NUMBER”
parts according to 4S scheme
[3.4].

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

60 | P a g e

MNM_SEED_PARTS text String true System parts of Mnemonic
seed with indexes which are
started from 2. Number of
parts is K -1 where K=
RESTORE_PARTS_NUMBER
The format is [2]_[part2
string]_[3]_[part3 string] …
[K]_[partK string]. Part with
index=1 should be given to
user and should not be kept
in the table excluding IntDS
system seed. “Underscore” is
separator between parts.

PARTS_NUMBER int int true Total number of parts.
Default value is 3.

RESTORE_PARTS_NUMBER int int true Necessary number of parts
which can restore Mnemonic
seed.
RESTORE_PARTS_NUMBER <=
PARTS_NUMBER
Default value is 2.

IS_SYSTEM_SEED bool boolean true True (1) if seed owner is IntDS
otherwise false (0). Default
value is false (0).

MNM_SEED_PARTS table has unique indexes:

Index Name Field

MODULUS_UNIQUE MODULUS

MNM_SEED_PARTS table has indexes:

Index Name Fields

PRIMARY MNM_SEED_ID, WALLET_ID

3.2 Accounting Transaction Management SubSystem DBs
This point can be done in the scope of future development. Will need some researching activity.

3.3 Bank Transaction Management SubSystem DBs
This point can be done in the scope of future development. Will need some researching activity.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

61 | P a g e

3.4 Exchange Transaction Management SubSystem DBs
This point can be done in the scope of future development. Will need some researching activity.

3.5 Message Transaction Management SubSystem DBs
This point can be done in the scope of future development. Will need some researching activity.

3.6 Contracts Management SubSystem DBs
This point can be done in the scope of future development. Will need some researching activity.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

62 | P a g e

3.7 Shared DBs
Shared DBs stores Data which can be used by each iDaemon sub system and component.

3.7.1 IntDS Shared Data DB Diagram
“IntDS Shared Data” DB (“shared_data”) consists of 8 tables and stores data related to IntDS errors and

types of Locking and Unlocking scripts. Every Inputs must have Unlocking Script (scriptSig) and every

Outputs must have Locking Script (ScriptPubKey). Both scripts are using formula with op-codes

depending on transaction type (see Paragraph 8 for more details).

The diagram below (Pic. 3.7.1) shows the DB structure.

Pic. 3.7.1

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

63 | P a g e

3.8 Monitoring System DB
3.8.1 IntDS Shared Data DB Description
1. BTC_REJECTION_MSG table holds data of rejection messages from blockchain. Data is described in

Appendix M.

BTC_REJECTION_MSG table consists of below fields:

Field Title DB Type Java type Not Null Description

REJECT_MSG_ID int int true Auto incremented, Primary Key.
Rejection message identity
number.

REJECT_MSG_CODE varchar(45) String true Rejection message code

REJECT_MSG_DESCR varchar(500) String true Rejection message description

REJECTION_CATEGORY varchar(15) String false Rejection message category

BTC_REJECTION_MSG table has indexes:

Index Name Fields

PRIMARY REJECT_MSG_ID

2. INTDSYSTEM_ERROR_CODES table holds data of IntDS error codes. Data is described in Appendix L.

INTDSYSTEM_ERROR_CODES table consists of below fields:

Field Title DB Type Java type Not Null Description

ERR_CODE_ID int int true Auto incremented, Primary Key.
Error code identity number.

ERROR_CODE varchar(45) String true IntDS error code

ERROR_DESCR varchar(500) String true Error description

SUBSYSTEM_ABBR varchar(15) String false SubSystem Abbreviation (see start
of document “Acronyms and
Abbreviations of the Current
Document”). Null in case IntDS
common error.

INTDSYSTEM_ERROR_CODES table has unique indexes:

Index Name Field

ERROR_CODE_UNIQUE ERROR_CODE

INTDSYSTEM_ERROR_CODES table has indexes:

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

64 | P a g e

Index Name Fields

PRIMARY ERR_CODE_ID

3. INPUTSCR_FORMULA_PARTS table holds data about parts of scriptSig formula for Inputs. (Appendix E)

INPUTSCR_FORMULA_PARTS table consists of below fields:

Field Title DB Type Java type Not Null Description

INPSCR_PART_ID int int true Auto incremented, Primary Key.
Identity number of Input script part.

SCRIPT_TYPE_ID int int true Script type identity, PK from
SCRIPT_PAIRS_TYPES table,
dependency with script pair type.
The record is related to part of
INPUT_SCRIPTSIG_FORMULA value.

ORDER_IN_FORMULA int int true Order number of the part in the
script formula string.

OPCODE_ID int int true Opcode identity, PK from OPCODES
table, dependency with opcode.
Value is Zero if this part is not
opcode. This part is script
parameter in this case.

SCRIPT_PARAM_ID int int true Script parameter identity, PK from
SCRIPT_PARAMS table, dependency
with script parameter. Value is Zero
if this part is not script parameter.
This part is opcode in this case.

IS_OPCODE bool boolean true This field is true (1) if part is
opcode, otherwise false (0). Default
value is true (1).

INPUTSCR_FORMULA_PARTS table has foreign keys:

Foreign Key Name Referenced Table Field Referenced Field
INP_FORMULA_SCRIPT_TYPE_ID_FK SCRIPT_PAIRS_TYPES SCRIPT_TYPE_ID SCRIPT_TYPE_ID

INP_FORMULA_OPCODE_ID_FK OPCODES OPCODE_ID OPCODE_ID

INP_FORMULA_SCRIPT_PARAMID_FK SCRIPT_PARAMS SCRIPT_PARAM_ID SCRIPT_PARAM_ID

INPUTSCR_FORMULA_PARTS table has indexes:

Index Name Fields

PRIMARY INPSCR_PART_ID

INP_FORMULA_SCRIPT_TYPE_ID_FK_IDX SCRIPT_TYPE_ID

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

65 | P a g e

INP_FORMULA_OPCODE_ID_FK_IDX OPCODE_ID

INP_FORMULA_SCRIPT_PARAMID_FK_IDX SCRIPT_PARAM_ID

4. OPCODES table holds data about operation codes (see opcodes data in the Appendix D) which are used

in the Inputs/Outputs scripts.

OPCODES table consists of below fields:

Field Title DB Type Java type Not Null Description

OPCODE_ID int int true Auto incremented, Primary Key.
Opcode identity number.

OPCODE_WORD varchar(45) String true Opcode as word representation.
Unique.

OPCODE varchar(25) String true Opcode as numbers
representation

OPCODE_HEX varchar(45) String true Opcode as hex representation

OPCODE_INPUT varchar(255) String false Opcode in the input script

OPCODE_OUTPUT varchar(255) String false Opcode in the output script

OPCODE_DESCR varchar(1000) String true Opcode description

IS_DISABLED bool boolean true This field is true (1) if opcode
marked as disabled, otherwise
false (0). Default value is false
(0). If any opcode marked as
disabled is present in a script - it
must also abort and fail.

OPCODE_TYPE_ID int int true Opcode type identity, PK from
OPCODE_TYPES table,
dependency with opcode type.

OPCODES table has foreign keys:

Foreign Key Name Referenced Table Field Referenced Field
OPCODE_TYPE_ID_OPCODE_TYPE_FK OPCODE_TYPES OPCODE_TYPE_ID OPCODE_TYPE_ID

OPCODES table has unique indexes:

Index Name Field

OPCODE_WORD_UNIQUE OPCODE_WORD

OPCODES table has indexes:

Index Name Fields

PRIMARY OPCODE_ID

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

66 | P a g e

OPCODE_TYPE_ID_OPCODE_TYPE_IDX OPCODE_TYPE_ID

5. OPCODE_TYPES table holds data about opcode types (see opcode types in the Appendix C).

OPCODE_TYPES table consists of below fields:

Field Title DB Type Java type Not Null Description

OPCODE_TYPE_ID int int true Auto incremented, Primary
Key. Opcode type identity
number.

OPCODE_TYPE varchar(45) String true Opcode type name

OPCODE_TYPE_DESCR varchar(500) String false Opcode type description

OPCODE_TYPES table has indexes:

Index Name Fields

PRIMARY OPCODE_TYPE_ID

6. OUTPUTSCR_FORMULA_PARTS table holds data about parts of scriptPubKey formula for Outputs.

(Appendix E)

OUTPUTSCR_FORMULA_PARTS table consists of below fields:

Field Title DB Type Java type Not Null Description

OUTSCR_PART_ID int int true Auto incremented, Primary Key.
Identity number of Output script
part.

SCRIPT_TYPE_ID int int true Script type identity, PK from
SCRIPT_PAIRS_TYPES table,
dependency with script pair type.
The record is related to part of
OUTPUT_SCRIPTPUBKEY_FORMULA
value.

ORDER_IN_FORMULA int int true Order number of the part in the
script formula string.

OPCODE_ID int int true Opcode identity, PK from OPCODES
table, dependency with opcode.
Value is Zero if this part is not
opcode. This part is script
parameter in this case.

SCRIPT_PARAM_ID int int true Script parameter identity, PK from
SCRIPT_PARAMS table, dependency
with script parameter. Value is Zero

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

67 | P a g e

if this part is not script parameter.
This part is opcode in this case.

IS_OPCODE bool boolean true This field is true (1) if part is
opcode, otherwise false (0). Default
value is true (1).

OUTPUTSCR_FORMULA_PARTS table has foreign keys:

Foreign Key Name Referenced Table Field Referenced Field
OUTP_FORMULA_SCRIPT_TYPE_ID_FK SCRIPT_PAIRS_TYPES SCRIPT_TYPE_ID SCRIPT_TYPE_ID

OUTP_FORMULA_OPCODE_ID_FK OPCODES OPCODE_ID OPCODE_ID

OUTP_FORMULA_SCRIPT_PARAMID_FK SCRIPT_PARAMS SCRIPT_PARAM_ID SCRIPT_PARAM_ID

OUTPUTSCR_FORMULA_PARTS table has indexes:

Index Name Fields

PRIMARY OUTSCR_PART_ID

OUTP_FORMUL_SCRIPT_TYPE_ID_IDX SCRIPT_TYPE_ID

OUTP_FORMULA_OPCODE_ID_FK_IDX OPCODE_ID

OUTP_FORMULA_SCRIPT_PARAMID_FK_IDX SCRIPT_PARAM_ID

7. SCRIPT_PARAMS table holds data about script parameters (see parameters data in the Appendix F)

SCRIPT_PARAMS table consists of below fields:

Field Title DB Type Java type Not Null Description

SCRIPT_PARAM_ID int int true Auto incremented, Primary
Key. Script parameter
identity number.

PARAM_NAME varchar(255) String true Parameter name

PARAM_DESCR varchar(255) String false Parameter description

SCRIPT_PARAMS table has unique indexes:

Index Name Field

PARAM_NAME_UNIQUE PARAM_NAME

SCRIPT_PARAMS table has indexes:

Index Name Fields

PRIMARY SCRIPT_PARAM_ID

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

68 | P a g e

8. SCRIPT_PAIRS_TYPES table holds data about types of script pairs in the Output and Input parts of

transaction (see types data in the Appendix E)

SCRIPT_PAIRS_TYPES table consists of below fields:

Field Title DB Type Java type Not
Null

Description

SCRIPT_TYPE_ID int int true Auto incremented, Primary
Key. Identity number of
types of script pairs.

SCRIPT_TYPE varchar(45) String true Script type. Unique

SCRIPT_TYPE_TITLE varchar(255) String true Script type title. Unique

SCRIPT_TYPE_DESCR varchar(500) String false Script type description

OUTPUT_SCRIPT_FORMULA varchar(255) String true Output’s Script formula.
Unique

INPUT_SCRIPT_FORMULA varchar(255) String false Input’s Script formula

OUTPUT_SCRIPT_TITLE varchar(45) String false Output’s Script title.
Example: scriptPubKey

INPUT_SCRIPT_TITLE varchar(45) String false Output’s Script title.
Example: scriptSig

SCRIPT_PAIRS_TYPES table has unique indexes:

Index Name Field

SCRIPT_TYPE_UNIQUE SCRIPT_TYPE

SCRIPT_TYPE_TITLE_UNIQUE SCRIPT_TYPE_TITLE

OUTPUT_SEND_FORMULA_UNIQUE OUTPUT_SCRIPTPUBKEY_FORMULA

SCRIPT_PAIRS_TYPES table has indexes:

Index Name Fields

PRIMARY SCRIPT_TYPE_ID

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

69 | P a g e

3.8.2 Monitoring System DB Diagram
The Monitoring System has “trx_monitoring” DB. This DB consists of Block Chain data and sub-systems data

(as new transactions, btc addresses, etc.) which should be monitored. The name prefix of sub-system

tables should correspond to sub system name:

- two tables with “STRXMSS_” name prefix stores data from “Single-sig Trx Management SubSystem”

- tables with “ATRXMSS_” name prefix stores data from “Accounting Trx Management SubSystem”

- tables with “BTRXMSS_” name prefix stores data from “Bank Trx Management SubSystem”

- tables with “EATRXMSS_” name prefix stores data from “Exchange Trx Management SubSystem”

- tables with “MTRXMSS_” name prefix stores data from “Message Trx Management SubSystem”

- tables with “CONTRMSS_” name prefix stores data from “Contracts Management SubSystem”

Notes: There are only STrxMSS tables at this moment. “trx_monitoring” DB structure should be updated in

future versions of this document depending on planning stage of each sub-system.

The diagram below (Pic. 3.8.1) shows the Monitoring System DB structure.

Pic. 3.8.1

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

70 | P a g e

3.8.3 Monitoring System DB Description
BLOCKS table holds data about blocks. The table is used during the monitoring iteration to determine the

latest block that has been changed since last iteration. Blocks data is received and captured periodically

from Block Chain.

BLOCKS table consists of below fields:

Field Title DB Type Java type Not Null Description

BLOCK_INDEX int int true Auto incremented, Primary
Key. Block identity number.

BLOCK_HASH text String true Block Identifier is a hash of
block. Maximum size -
2,000,000 chars. Unique

BLOCK_HEIGHT int int true The block height or index.
The first block is Genesis.
Genesis height is zero.

PREV_BLOCK_HASH text String true The hash of the previous
block

BLOCK_TIMESTAMP int int true The Date-time when the
block was created

DATE_CREATED timestamp(6) String true Date-time of record
creation

BLOCKS table has unique indexes:

Index Name Field

BLOCK_HASH_UNIQUE BLOCK_HASH

BLOCKS table has indexes:

Index Name Fields

PRIMARY BLOCK_INDEX

Single-sig Transaction Monitoring SubSystem tables:

1. STRXMSS_MNT_TRXS_ERROR_CODES table is join table between STRXMSS_MONITORED_TRXS table

and INTDSYSTEM_ERROR_CODES table from “shared_data” DB. Dependency with IntDS error from

“shared_data” DB.

TRANSACTIONS_ERROR_CODES table consists of below fields:

Field Title DB Type Java type Not Null Description

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

71 | P a g e

TRX_ID UUID java.util.UUID ->
setObject/getObjec
t in JDBC

true Transaction identifier, PK
from
STRXMSS_MONITORED_TRXS
table

ERR_CODE_ID int int true Error code identity number,
PK from
INTDSYSTEM_ERROR_CODES
table, dependency with IntDS
error from “shared_data” DB.
Error with descriptions can be
found in the Appendix L

DATE_CREATED timestamp(6) String true Date-time of record creation

STRXMSS_MNT_TRXS_ERROR_CODES table has foreign keys:

Foreign Key Name Referenced Table Field Referenced Field

TRX_ID_ERROR_CODES_FK STRXMSS_MONITORED_TRXS TRX_ID TRX_ID

STRXMSS_MNT_TRXS_ERROR_CODES table has indexes:

Index Name Fields

PRIMARY ERR_CODE_ID, TRX_ID

2. STRXMSS_MONITORED_BTC_ADDR table holds data about Btc addresses which should be monitored

for inbound transactions.

STRXMSS_MONITORED_BTC_ADDR table consists of below fields:

Field Title DB Type Java type Not Null Description

BTC_ADDRESS varchar(50) String true Primary Key, the Bitcoin
address identifier.

WALLET_ID UUID java.util.UUID ->
setObject/getObject
in JDBC

true Primary Key, Wallet identifier.
PK from WALLETS table,
“trx_management” DB.
Dependency with Wallet record
in “trx_management” DB

DATE_CREATED timestamp(6) String true Date-time of record creation

BTC_AMOUNT numeric BigDecimal true Bitcoins amount which should
be paid.

BTC_AMOUNT_PAID numeric BigDecimal true Bitcoins amount which already
was paid.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

72 | P a g e

STRXMSS_MONITORED_BTC_ADDR table has indexes:

Index Name Fields

PRIMARY BTC_ADDRESS, WALLET_ID

3. STRXMSS_MONITORED_INB_TRXS table holds data about Inbound Btc transactions which should be

monitored for confirmations.

STRXMSS_MONITORED_INB_TRXS table consists of below fields:

Field Title DB Type Java type Not
Null

Description

INB_TRX_ID UUID java.util.UUID ->
setObject/getO
bject in JDBC

true Primary Key, the transaction identifier.

DAEMON_TXID_HASH text String true Transaction Identifier is a hash of
completed transaction which allows
other transactions to spend its outputs.
Transaction Identifier is received from
Block Chain via the DmnCS. Maximum
size - 1,000,000 chars. Unique

BLOCK_INDEX int int true Block identifier, PK from BLOCKS table,
dependency with block in which
transaction was included.

CONFIRMATIONS int int true Number of new blocks in Block Chain
after the transaction has been included
in the block and block was published to
the network. Confirmations is received
from Block Chain via the DmnCS. The
transaction should be considered as
confirmed if it is a six number of blocks
deep. Zero by default.

STRXMSS_MONITORED_INB_TRXS table has indexes:

Index Name Fields

PRIMARY DAEMON_TXID_HASH

BLOCK_INDEX_FK_IDX BLOCK_INDEX

TRANSACTIONS table has foreign keys:

Foreign Key Name Referenced Table Field Referenced Field

BLOCK_INDEX_FK BLOCKS BLOCK_INDEX BLOCK_INDEX

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

73 | P a g e

4. STRXMSS_INB_TRXS_BTC_ADDR table is join table between STRXMSS_MONITORED_BTC_ADDR table

and STRXMSS_MONITORED_INB_TRXS table.

Field Title DB Type Java type Not Null Description

BTC_ADDRESS varchar(50) String true Btc address identity, PK from
STRXMSS_MONITORED_BTC_ADDR
table

INB_TRX_ID UUID java.util.UUID ->
setObject/getObject in
JDBC

true Inbound Trx identifier, PK from
STRXMSS_MONITORED_INB_TRXS
table

STRXMSS_INB_TRXS_BTC_ADDR table has indexes:

Index Name Fields

PRIMARY BTC_ADDRESS, INB_TRX_ID

TXID_HASH_INBTRX_BTCADDR_FK_IDX INB_TRX_ID

STRXMSS_INB_TRXS_BTC_ADDR table has foreign keys:

Foreign Key Name Referenced Table Field Referenced
Field

BTC_ADDR_INBTRX_BTCADD
R_FK

STRXMSS_MONITORED_BTC_ADDR BTC_ADDRESS BTC_ADDRESS

INB_TRXID_INBTRX_BTCADD
R_FK

STRXMSS_MONITORED_INB_TRXS INB_TRX_ID INB_TRX_ID

5. STRXMSS_MONITORED_TRXS table holds data about Outbound Btc transactions which should be

monitored for confirmations.

STRXMSS_MONITORED_TRXS table consists of below fields:

Field Title DB Type Java type Not Null Description

TRX_ID UUID java.util.UUI
D ->
setObject/g
etObject in
JDBC

true Primary Key, the transaction
identifier.

DAEMON_TXID_HASH text String true Transaction Identifier is a hash
of completed transaction which
allows other transactions to
spend its outputs. Transaction
Identifier is received from Block

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

74 | P a g e

Chain via the DmnCS. Zero by
default. Maximum size -
1,000,000 chars. Unique

BLOCK_INDEX int int true Block identifier, PK from
BLOCKS table, dependency with
block in which transaction was
included

DATE_CREATED timestamp(6) String true Date-time of record creation

CHANGE_BTC_ADDRESS varchar(50) String false User’s Btc address for receiving
change. This field is not null if
this Outbound trx has a change
which should be returned to
User, otherwise null. Null by
default.

SYSTEM_FEE_BTC_ADDRESS varchar(50) String false Company Btc address for
receiving trx fee as IntDS profit.
This field is not null if this
Outbound trx has IntDS fee
which should be returned to the
Company Wallet, otherwise
null. Null by default.

STRXMSS_MONITORED_TRXS table has foreign keys:

Foreign Key Name Referenced Table Field Referenced Field
BLOCK_INDEX_BLOCKS_FK BLOCKS BLOCK_INDEX BLOCK_INDEX

STRXMSS_MONITORED_TRXS table has unique indexes:

Index Name Field

DAEMON_TXID_ HASH_UNIQUE DAEMON_TXID_ HASH

STRXMSS_MONITORED_TRXS table has indexes:

Index Name Fields

PRIMARY TRX_ID

BLOCK_INDEX_BLOCKS_FK_IDX BLOCK_INDEX

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

75 | P a g e

3.9 Functions and Stored Procedures Specifications
By default, PostgreSQL supports 3 procedural languages: SQL, PL/pgSQL, and C. PL/pgSQL [1.20] is SQL

Procedural Language.

The advantages of using PostgreSQL stored procedures are [1.21]:

1. Reduce the number of round trips between application and database servers. All SQL statements

are wrapped inside a function stored in the PostgreSQL database server so the application only has

to issue a function call to get the result back instead of sending multiple SQL statements and wait

for the result between each call.

2. Increase application performance because user-defined functions pre-compiled and stored in the

PostgreSQL database server.

3. Be able to reuse in many applications. Once you develop a function, you can reuse it in any

applications.

Note: Disadvantages as manage versions, conversion from PostgreSQL to other DB types, etc. are not

considered in the scope of this project

3.9.1 STrxMSS Functions and Stored Procedures

Add Input data from UTXO

PSQL SP Name Description Example to call Result example
add_input_from_utxo Procedure add Input data record from given

UTXO for new Outbound transaction.
1) INSERT INTO INPUTS (…) VALUES (…)
Fields-Values:
INPUT_ID
TRX_ID=0
TEMP_TRX_ID=TEMP_OUTB_TRXS.TEMP_TRX_ID
INPUT_INDEX=<ind>
PREV_DAEMON_TXID_HASH=<TRANSACTIONS.DAEMON_TXI
D_HASH of current UTXO>
VOUT_INDEX=<OUTPUTS.OUTPUT_INDEX of current UTXO>
VOUT_BTC_VALUE=<OUTPUTS.BTC_VALUE of current UTXO>
SCRIPT_SIG_HASH=0
SCRIPT_TYPE_ID=1

2) Add dependency Input -> previous Trx
Output
UPDATE OUTPUTS SET
SPENT_BY_INPUT_ID=INPUTS,INPUT_ID
WHERE OUTPUT_ID=<OUTPUTS.OUTPUT_ID
of current UTXO>

Input Parameters:

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

76 | P a g e

Parameter title PSQL Type Java Type Value Example Description

Output Parameters:

Parameter title PSQL Type Java Type Value Example Description

Exceptions:

PSLQ Error
code

PSQL Condition
Name

Error
Description

Error Returned
Value

Error Returned Value
Java Type

Add Inbound Trx data from message

PSQL SP Name Description Example to call Result example
add_inb_trx_from_mnts

Procedure creates record in the
TRANSACTIONS table for Inbound
Trx.
TrxMC DB is “trx_management”.
1) INSERT INTO TRANSACTIONS (…)
VALUES (…)
Fields-Values criteria:
DAEMON_TXID_HASH
TRX_RAW_SGN_DATA
TRX_RAW_SGN_NOSERIAL
DATE_CREATED=<now>
DATE_UPDATED=DATE_CREATED
CONFIRMATIONS=6
BLOCK_HASH
IS_OUTBOUND=false
LOCK_TIME=0
IS_EVERY_OUTPUT_SPENT=false
TRX_STATUS_ID=1
HAS_USER_CHANGE=false
HAS_SYSTEM_FEE=false
IS_REJECTED=false
REJECT_MSG_ID=null
MINER_FEE

2) INSERT INTO WALLETS_INB_TRXS
(…) VALUES (…)
TRX_ID=<new TRANSACTIONS.TRX_ID>
WALLET_ID=<given Wallet Id>

3) INSERT INTO OUTPUTS (…)
VALUES (…)
Fields-Values criteria:
TRX_ID=<new TRANSACTIONS.TRX_ID>
OUTPUT_INDEX
BTC_VALUE
BTC_ADDRESS
IS_SPENT=false

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

77 | P a g e

IS_SYSTEM_FEE=false
IS_CHANGE=false
SCRIPT_PUB_KEY_HASH
PUBK_SCRIPT_TYPE_ID=1

6) INSERT INTO INPUTS (…) VALUES
(…)
Fields-Values criteria:
TRX_ID=<new TRANSACTIONS.TRX_ID>
INPUT_INDEX
PREV_DAEMON_TXID_HASH
VOUT_INDEX
VOUT_BTC_VALUE
SCRIPT_SIG_HASH
SCRIPT_TYPE_ID=1

Input Parameters:

Parameter title PSQL Type Java Type Value Example Description

Output Parameters:

Parameter title PSQL Type Java Type Value Example Description

Exceptions:

PSLQ Error
code

PSQL Condition
Name

Error
Description

Error Returned
Value

Error Returned Value
Java Type

Add Outbound Trx data from temporary Trx data

PSQL SP Name Description Example to
call

Result example

add_outb_trx_from_tmp

Procedure creates record in the TRANSACTIONS
table for Outbound Trx.
TrxMC DB is “trx_management”.
1) INSERT INTO TRANSACTIONS (…) VALUES (…)
Fields-Values:
DAEMON_TXID_HASH=0
TRX_RAW_SGN_DATA=TEMP_OUTB_TRXS.TRX_RAW_SGN_DATA
TRX_RAW_SGN_NOSERIAL=
TEMP_OUTB_TRXS.TRX_RAW_SGN_NOSERIAL
DATE_CREATED=<now>
DATE_UPDATED=DATE_CREATED
CONFIRMATIONS=0
BLOCK_HASH=null
IS_OUTBOUND=true
LOCK_TIME=0
IS_EVERY_OUTPUT_SPENT=false
TRX_STATUS_ID=3
HAS_USER_CHANGE=TEMP_OUTB_TRXS.HAS_USER_CHANGE

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

78 | P a g e

HAS_SYSTEM_FEE=<true if TEMP_OUTB_TRXS.INTDS_FEE >0
otherwise false>
IS_REJECTED=false
REJECT_MSG_ID=null
MINER_FEE= TEMP_OUTB_TRXS.PRIORITY_FEE

2) INSERT INTO WALLETS_OUTB_TRXS (…)
VALUES (…)
TRX_ID=<new TRANSACTIONS.TRX_ID>
WALLET_ID=TEMP_OUTB_TRXS.FROM_WALLET_ID

3)If TRANSACTIONS.HAS_USER_CHANGE=true
INSERT INTO WALLETS_INB_TRXS (…) VALUES
(…)
TRX_ID=<new TRANSACTIONS.TRX_ID>
WALLET_ID=TEMP_OUTB_TRXS.FROM_WALLET_ID

4) If TRANSACTIONS.HAS_SYSTEM_FEE=true
INSERT INTO WALLETS_INB_TRXS (…) VALUES
(…)
TRX_ID=<new TRANSACTIONS.TRX_ID>
WALLET_ID=<WALLETS.WALLET_ID
wich can be received according to criteria:
OUTPUTS.TRX_ID= new TRANSACTIONS.TRX_ID
OUTPUTS.BTC_ADDRESS=SYSTEM_BTC_ADDRESS.BTC_ADDRESS
SYSTEM_BTC_ADDRESS.WALLET_ID= WALLETS.WALLET_ID
WALLETS.IS_SYSTEM_WALLET=true>

5) UPDATE OUTPUTS SET TRX_ID=<new
TRANSACTIONS.TRX_ID> WHERE
TEMP_TRX_ID=TEMP_OUTB_TRXS.TEMP_TRX_ID
6) UPDATE INPUTS SET TRX_ID=<new
TRANSACTIONS.TRX_ID> WHERE
TEMP_TRX_ID=TEMP_OUTB_TRXS.TEMP_TRX_ID

Input Parameters:

Parameter title PSQL Type Java Type Value Example Description

Output Parameters:

Parameter title PSQL Type Java Type Value Example Description

Exceptions:

PSLQ Error
code

PSQL Condition
Name

Error
Description

Error Returned
Value

Error Returned Value
Java Type

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

79 | P a g e

Add Wallet Stored Procedure

PSQL Func Name Description Example to
call

Result example

add_wallet Procedure adds new wallet.
Add record to WALLETS table:
WALLET_ID = SELECT <postgresql uuid generation
function>
DATE_CREATED=<now>
DATE_UPDATED=<now>
BTC_AVAILABLE _FUNDS=0
BTC_BALANCE=0
IS_SYSTEM_WALLET=<isSystemWallet>
IS_LOCKED=false
DATE_TO_UNLOCK=NULL

Input Parameters:

Parameter title PSQL Type Java Type Value Example Description
isSystemWallet

Output Parameters:

Parameter title PSQL Type Java Type Value Example Description
Wallet_ID Wallet ID of the

newly created
wallet.

isSystemWallet

Exceptions:

PSLQ Error
code

PSQL Condition
Name

Error
Description

Error Returned
Value

Error Returned Value
Java Type

Add Mnemonic seed parts Function

PSQL Func Name Description Example to
call

Result example

add_mnm_parts Procedure adds mnemonic seed parts for a wallet.
Add record to MNM_SEED_PARTS table:

1) Values:

WALLET_ID = <wallet id>
MNM_SEED_ID = SELECT <postgresql uuid
generation function>
MODULUS = <modulus>

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

80 | P a g e

PARTS_NUMBER = <n>
RESTORE_PARTS_NUMBER = <k>
IS_SYSTEM_SEED = <isSystemWallet>

2) Parse JSON array partsArray and assign value to
MNM_SEED_PARTS field. Refer section 3.1.4
for format of the string.
If isSystemWallet = true:
Form string (mnm_parts) with all k parts of the
partsArray.

Else
Form string (mnm_parts) with k-1 parts starting
at index 2.
Return arrValue of index 1.

MNM_SEED_PARTS = mnm_parts

Input Parameters:

Parameter title PSQL Type Java Type Value Example Description
Wallet_Id Wallet_Id returned

by add_wallet SP

isSystemWallet isSystemWallet as
returned by
add_wallet SP

modulus Modulus returned
by 4S API

partsArray String with
mnemonic seed
parts. Refer section
3.1.4 for format.

n 3 N as returned by 4S
API

k 2 K as returned by 4S
API

Output Parameters:

Parameter title PSQL Type Java Type Value Example Description
mnmUserPart (Optional) User part of the

mnemonic seed.

Exceptions:

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

81 | P a g e

PSLQ Error
code

PSQL Condition
Name

Error
Description

Error Returned
Value

Error Returned Value
Java Type

Calculate total utxo balance for a wallet Stored Procedure

PSQL SP Name Description Example to call Result example
utxos_balance_for_wallet Procedure calculates current

UTXOs balance for wallet.
1) Get a list of unspent outputs

(UTXOs): Call
“utxos_for_wallet(…)”

2) Sum of UTXOs Outputs Btc
values is the required
balance:
Sum of
OUTPUTS.BTC_VALUE

Input Parameters:

Parameter title PSQL Type Java Type Value Example Description

Output Parameters:

Parameter title PSQL Type Java Type Value Example Description

Exceptions:

PSLQ Error
code

PSQL Condition
Name

Error
Description

Error Returned
Value

Error Returned Value
Java Type

Calculate total amount spent by confirmed transactions in a wallet Stored Procedure

PSQL SP Name Description Example to call Result
example

spent_confirmed_from_wallet Procedure gets the total amount spent
from wallet.

1) Get all outbound transaction ids for

given wallet id.
TRX ID list: WALLETS_OUTB_TRXS.TRX_ID
WALLETS_OUTB_TRXS.WALLET_ID=<Given
wallet Id>

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

82 | P a g e

2) Get transactions that are confirmed

and not rejected.
Per each TRANSACTIONS.TRX_ID:
TRANSACTIONS.CONFIRMATIONS>=6,
TRANSACTIONS.IS_REJECTED=false

3) Per every TRX ID, find list of inputs
Per each TRX ID:
INPUTS.TRX_ID= TRANSACTIONS.TRX_ID

4) Sum of Btc values is the total amount

spent by confirmed transactions:
Sum of INPUTS.BTC_VALUE

Input Parameters:

Parameter title PSQL Type Java Type Value Example Description

Output Parameters:

Parameter title PSQL Type Java Type Value Example Description

Exceptions:

PSLQ Error
code

PSQL Condition
Name

Error
Description

Error Returned
Value

Error Returned Value
Java Type

Calculate total amount spent by pending transactions in a wallet Stored Procedure

PSQL SP Name Description Example to call Result example
spent_pending_from_wallet Procedure gets the total amount spent

from wallet but still pending (transactions
not part of main blockchain).

1) Get all outbound transaction ids for

given wallet id.
TRX ID list: WALLETS_OUTB_TRXS.TRX_ID
WALLETS_OUTB_TRXS.WALLET_ID=<Given
wallet Id>

2) Get transactions that are pending and

not rejected.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

83 | P a g e

Per each TRANSACTIONS.TRX_ID:
TRANSACTIONS.CONFIRMATIONS < 6,
TRANSACTIONS.IS_REJECTED=false

3) Per every TRX ID, find list of inputs
Per each TRX ID:
INPUTS.TRX_ID= TRANSACTIONS.TRX_ID

4) Sum of Btc values is the total amount

spent but still pending:
Sum of INPUTS.BTC_VALUE

Input Parameters:

Parameter title PSQL Type Java Type Value Example Description

Output Parameters:

Parameter title PSQL Type Java Type Value Example Description

Exceptions:

PSLQ Error
code

PSQL Condition
Name

Error
Description

Error Returned
Value

Error Returned Value
Java Type

Delete temporary Trx data Stored Procedure

PSQL SP Name Description Example to call Result example
delete_temp_trx Procedure deletes temporary

transaction record and
corresponding Inputs/Outputs
records. TrxMC DB is
“trx_management”.
DELETE FROM OUTPUTS WHERE
TEMP_TRX_ID= …
DELETE FROM INPUTS WHERE
TEMP_TRX_ID …
DELETE FROM TEMP_OUTB_TRXS
WHERE TEMP_TRX_ID= … AND
EXTERNAL_TRX_ID= …

Input Parameters:

Parameter title PSQL Type Java Type Value Example Description

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

84 | P a g e

Output Parameters:

Parameter title PSQL Type Java Type Value Example Description

Exceptions:

PSLQ Error
code

PSQL Condition
Name

Error
Description

Error Returned
Value

Error Returned Value
Java Type

Get all UTXOs balance for given Wallet

PSQL SP Name Description Example to call Result example
utxos_balance_for_wallet Procedure calculates current UTXOs

balance for wallet.
1) Get a list of unspent outputs
(UTXOs): Call “utxos_for_wallet(…)”
2) Sum of UTXOs Outputs Btc values is
the required balance:
Sum of OUTPUTS.BTC_VALUE

Input Parameters:

Parameter title PSQL Type Java Type Value Example Description

Output Parameters:

Parameter title PSQL Type Java Type Value Example Description

Exceptions:

PSLQ Error
code

PSQL Condition
Name

Error
Description

Error Returned
Value

Error Returned Value
Java Type

Get Wallet Balance data for wallet Function

PSQL Func Name Description Example to
call

Result example

get_wallet_balance Function gets the balance data (Available Balance,
Current Balance) for a wallet id or a set of wallet
ids.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

85 | P a g e

1) Call following stored procedures for wallet
id(s):
unspent_amnt = SELECT
utxos_balance_for_wallet(…)

confirmed_spent = SELECT
spent_confirmed_from_wallet(…)

pending_spent = SELECT
spent_pending_from_wallet(…)

2) Calculate available balance
avlblBalance = unspent_amnt –

(confirmed_spent + pending_spent)

3) Calculate current balance

currBalance = unspent_amnt –
confirmed_spent

4) Update record in WALLETS table:

BTC_AVAILABLE_FUNDS = <avlblBalance>

BTC_BALANCE = <currBalance>

DATE_UPDATED = <now>

5) Get required fields from WALLETS table:
SELECT BTC_AVAILABLE_FUNDS,
BTC_BALANCE,
IS_LOCKED
where WALLET_ID = <Given wallet id>

Input Parameters:

Parameter title PSQL Type Java Type Value Example Description
Wallet ids

array of wallet ids

Output Parameters:

Parameter title PSQL Type Java Type Value Example Description

Exceptions:

PSLQ Error
code

PSQL Condition
Name

Error
Description

Error Returned
Value

Error Returned Value
Java Type

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

86 | P a g e

Get Wallet data for wallet Stored Procedure

PSQL Func Name Description Example to
call

Result example

get_wallet_data Procedure gets the wallet data for wallet.
1) Call Function get_wallet_balance() for given

wallet to get available balance, current balance
and IS_LOCKED for given wallet id:
SELECT get_wallet_balance(…)

2) From table WALLETS, get value of field

IS_SYSTEM_WALLET for given wallet id:
SELECT IS_SYSTEM_WALLET from WALLETS
where WALLET_ID = <Given wallet Id>

3) Get no. of input transactions:
SELECT COUNT(TRX_ID) from
WALLETS_INB_TRXS where WALLET_ID =
<Given wallet id>

4) Get no. of output transactions

SELECT COUNT(TRX_ID) from
WALLETS_OUTB_TRXS where WALLET_ID =
<Given wallet id>

Input Parameters:

Parameter title PSQL Type Java Type Value Example Description

Output Parameters:

Parameter title PSQL Type Java Type Value Example Description

Exceptions:

PSLQ Error
code

PSQL Condition
Name

Error
Description

Error Returned
Value

Error Returned Value
Java Type

Get outbound transaction data Stored Procedure

PSQL Func Name Description Example to
call

Result example

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

87 | P a g e

get_outb_trx_data Procedure gets transaction data for outbound
transaction.
1) From table TRANSACTIONS, get daemonTrxId,

isRejected for given transaction id:
SELECT TRX_ID, DAEMON_TXID_HASH,
IS_REJECTED from TRANSACTIONS where
DAEMON_TXID_HASH = <Given transaction Id>

2) From table TRX_STATUSES, get
daemonTrxStatus for given transaction id:
SELECT STATUS from TRX_STATUSES where
TRX_STATUS_ID =
TRANSACTIONS.TRX_STATUS_ID and
TRANSACTIONS. DAEMON_TXID_HASH =
<Given transaction Id>

3) Assign a bool value to isConfirmed depending
on number of confirmations:
confirmations = SELECT CONFIRMATIONS from
TRANSACTIONS where DAEMON_TXID_HASH =
<Given transaction Id>
If confirmations >=6, isConfirmed = true
Else isConfirmed = false

4) Calculate miner fee.
sumOfInputs =
SELECT SUM(VOUT_BTC_VALUE) from INPUTS
WHERE TRX_ID = <TRX_ID from step 1>

sumOfOutputs =
SELECT SUM(BTC_VALUE) from OUTPUTS
WHERE TRX_ID = <TRX_ID from step 1>

minerFee = sumOfInputs – sumOfOutputs
Return minerFee only if minerFee > 0

5) Get system fee.
sysFeePresent = SELECT HAS_SYSTEM_FEE from
TRANSACTIONS where TRANSACTION_ID =
<Given transaction Id>
If sysFeePresent = true:
systemFee = SELECT BTC_VALUE from
OUTPUTS where TRX_ID = <Given transaction
Id> AND IS_SYSTEM_FEE = true

Return daemonTrxId, isRejected,
daemonTrxStatus, isConfirmed, minerFee,
systemFee

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

88 | P a g e

Input Parameters:

Parameter title PSQL Type Java Type Value Example Description
daemonTrxId

Output Parameters:

Parameter title PSQL Type Java Type Value Example Description
daemonTrxId

isRejected

daemonTrxStatus

isConfirmed

minerFee

systemFee

Exceptions:

PSLQ Error
code

PSQL Condition
Name

Error
Description

Error Returned
Value

Error Returned Value
Java Type

Get Inbound transactions for a bitcoin address Stored Procedure

PSQL SP Name Description Example to call Result example
get_inb_trx_data Procedure gets all inbound transactions for

given bitcoin address.

1) Get all inbound transaction ids for given

wallet id.
TRX ID list: WALLETS_INB_TRXS.TRX_ID
WALLETS_INB_TRXS.WALLET_ID=<Given
wallet Id>

2) Get daemon trx hash and date created

for each transaction.
Per each TRANSACTIONS.TRX_ID:
DAEMON_TXID_HASH,
DATE_CREATED

3) Per every TRX ID, find outputs that have

destination address same as given btc
address.
Per each TRX ID:
OUTPUTS.TRX_ID=
TRANSACTIONS.TRX_ID

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

89 | P a g e

OUTPUTS.BTC_ADDRESS = <Given btc
address>

4) Sum of Btc values is the total output
amount for given btc address per
transaction:
Sum of OUTPUTS.BTC_VALUE

Input Parameters:

Parameter title PSQL Type Java Type Value Example Description
btcAddress

daemonWalletId

Output Parameters:

Parameter title PSQL Type Java Type Value Example Description
daemonTrxid

btcAmount

dateCreated

Exceptions:

PSLQ Error
code

PSQL Condition
Name

Error
Description

Error Returned
Value

Error Returned Value
Java Type

Send Raw Transaction error

PSQL SP Name Description Example to call Result example
send_raw_trx_error

Procedure creates record in the
TRANSACTIONS_ERROR_CEDES
table and update Trx status
2) INSERT INTO
TRANSACTIONS_ERRORO_CODES
(…) VALUES (…)
TRX_ID=<TRANSACTIONS.TRX_ID>
ERROR_CODE_ID=7
DATE_CREATED=<now>

2) UPDATE TRANSACTIONS SET
TRX_STATUS_ID=4,
DATE_UPDATED=<now> WHERE
TRX_ID=<transaction Id>

Input Parameters:

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

90 | P a g e

Parameter title PSQL Type Java Type Value Example Description

Output Parameters:

Parameter title PSQL Type Java Type Value Example Description

Exceptions:

PSLQ Error
code

PSQL Condition
Name

Error
Description

Error Returned
Value

Error Returned Value
Java Type

Select all UTXOs for given Wallet

PSQL SP Name Description Example to call Result example
utxos_for_wallet Procedure selects all current UTXOs

for wallet. Criteria:
1) Get all inbound transaction ids for
given wallet id.
 WALLETS_INB_TRXS.TRX_ID
WALLETS_INB_TRXS.WALLET_ID=<Giv
en wallet Id>
2) Get transactions that are
confirmed.
Per each TRANSACTIONS.TRX_ID:
TRANSACTIONS.CONFIRMATIONS>=6,
TRANSACTIONS.IS_EVERY_OUTPUT_S
PENT=false
3) Per every TRX ID, find list of
unspent outputs (UTXOs)
Per each TRX ID:
OUTPUTS.TRX_ID=
TRANSACTIONS.TRX_ID
OUTPUTS.IS_SPENT=false
4) Only consider those outputs whose
btc addresses belong to the wallet.
Per each Output:
SYSTEM_BTC_ADDRESSES.BTC_ADDRE
SS=OUTPUTS.BTC_ADDRESS
SYSTEM_BTC_ADDRESSES.WALLET_ID
=<Given wallet Id>

Input Parameters:

Parameter title PSQL Type Java Type Value Example Description

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

91 | P a g e

Output Parameters:

Parameter title PSQL Type Java Type Value Example Description

Exceptions:

PSLQ Error
code

PSQL Condition
Name

Error
Description

Error Returned
Value

Error Returned Value
Java Type

Update Outbound Trx Data after issuing into Block Chain

PSQL SP Name Description Example to call Result example
data_after_send_raw_trx Procedure updates Trx status to

“Pending” …
1) UPDATE TRANSACTIONS SET
TRX_STATUS_ID=2,
DATE_UPDATED=<now>,
DAEMON_TXID_HASH=<Trx hash
returned by Daemon after
sending> WHERE
TRX_ID=<transaction Id>
2) Every Outputs of previous
Inbound Trxs according to UTXOs
data should be updated

UPDATE OUTPUTS SET
IS_SPENT=true,
DATE_SPENT=<now> WHERE
SPENT_BY_INPUT_ID=<Input Id of
current transaction>

3) Check previous Inbound Trxs
according to UTXOs if every
Outputs were spent.
UPDATE TRANSACTIONS SET
IS_EVERY_OUTPUT_SPENT=true
WHERE TRX_ID=<UTXOs Trx Id>

4) If there is a change: UPDATE
SYSTEM_BTC_ADDRESSES SET
IS_USED=true WHERE
BTC_ADDRESS=<change Btc
address> AND

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

92 | P a g e

WALLET_ID=<Wallet Id related to
this Trx>
5) If there is a company fee:
UPDATE
SYSTEM_BTC_ADDRESSES SET
IS_USED=true WHERE
BTC_ADDRESS=<company fee Btc
address>

Input Parameters:

Parameter title PSQL Type Java Type Value Example Description

Output Parameters:

Parameter title PSQL Type Java Type Value Example Description

Exceptions:

PSLQ Error
code

PSQL Condition
Name

Error
Description

Error Returned
Value

Error Returned Value
Java Type

3.9.2 Monitoring System Functions and Stored Procedures

3.9.2.1 move_inc_to_archive
Parameters:

array of btc addresses identified as incoming (list_inc_addr)

Return:

error from SQl server or Success

1. Copy respective records from STRXMSS_MONITORED_BTC_ADDR to Archive table

INSERT INTO Archive

SELECT * from STRXMSS_MONITORED_BTC_ADDR WHERE BTC_ADDR = list_inc_addr[n];

2. Delete corresponding records from STRXMSS_INB_TRXS_BTC_ADDR, STRXMSS_MONITORED_INB_TRXS

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

93 | P a g e

4. Intelligent Daemon System Workflow

Diagrams
The following notation is used:

• Y – Yes

• N – No

• OK – Positive Result

• Err – System Error

• P[a-z][0-9] – Process/Sub-process [group alfa] [process number]

• C[a-z][0-9] – Connector [group alfa] [connector number]

• (…) - Expression

• […] – Variable

• <…> - Value of variable

Note: Log[DEBUG] lines were not included in workflow diagram consideration. Debug lines should be included

in an each component source code in the development stage if necessary.

4.1 Single-sig Transaction Management SubSystem Workflows
STrxMSS interface description can be found in the paragraph “5.1. Single-sig Transaction Management SubSystem

Interface”

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

94 | P a g e

4.1.1 Outbound Transaction Workflows

Diagram Ps0. High Level Diagram. Create Outbound Single-sig Trx:
All Inputs and Outputs of this transaction are correspond to P2PKH type only.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

95 | P a g e

Diagram Ps1. Create Temporary Single-sig Trx: “createSingleSigTrx” function

Diagram Ps2. Delete Temporary Single-sig Trx: “deleteTempTrx” function

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

96 | P a g e

Diagram Ps3. Send Single-sig Trx to blockchain: “sendSingleSigTrx” function

Diagram Ps4. Btc Addresses Validation of many recipients:

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

97 | P a g e

Diagram Ps5. Create Single-sig Btc Address:

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

98 | P a g e

Diagram Ps6. Create Single-sig Transaction (P2PKH):

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

99 | P a g e

Diagram Ps7. Prepare List of UTXOs:
Diagram criteria are:

1. "Btc Target" is used here for the Btc total amount to be spent plus Priority fee if applied. Number of Outputs

does not matter. Btc Target = Btc amount + Priority fee

2. Btc funds is enough. Total UTXOs balance - Btc Target >= 0

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

100 | P a g e

Diagram Ps9. Create Temporary Single-sig Trx: “createTransferFundsTrx” function

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

101 | P a g e

Get Transaction Status: “getTrxStatus” function

Start

Valid?

TrxMC Response:
Error data

IntDS ERR_CODE_ID
ERROR_CODE

TrxMC
Request data

validation

TrxMC: Error
IntDS

ERR_CODE_ID=23
Logfile:

Log[STrxMSS-INFO]Y

N
End

TrxMC Response:
 getTrxStatus
response data

TrxMC DB:
Join tables TRANSACTIONS and

TRX_STATUSES to get
TRX_STATUSES.STATUS

for <TRX_ID from request>

Success?

TrxMC: Error
IntDS ERR_CODE_ID=5

Logfile: Log[STrxMSS-DB-ERR]

 Log[STrxMSS-INFO]

TrxMC:
 Log[STrxMSS-INFO]

Err

OK

Get Transaction Errors: “getTrxErrors” function

Start

Valid?

TrxMC Response:
Error data

IntDS ERR_CODE_ID
ERROR_CODE

TrxMC
Request data

validation

TrxMC: Error
IntDS

ERR_CODE_ID=23
Logfile:

Log[STrxMSS-INFO]Y

N
End

TrxMC Response:
 getTrxErrors
response data

TrxMC DB, IntDS Shared Data DB:
Join tables TRANSACTIONS_ERROR_CODES and

INTDSYSTEM_ERROR_CODES to get
INTDSYSTEM_ERROR_CODES.ERROR_CODE,
INTDSYSTEM_ERROR_CODES.ERROR_DESCR,

TRANSACTIONS_ERROR_CODES.ERROR_CODE_ID,
TRANSACTIONS_ERROR_CODES.DATE_CREATED

for <TRX_ID from request>

Success?

TrxMC: Error
IntDS ERR_CODE_ID=11

Logfile: Log[STrxMSS-DB-ERR]

 Log[STrxMSS-INFO]

TrxMC:
 Log[STrxMSS-INFO]

Err

OK

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

102 | P a g e

Get Data for Given Outbound Transaction: “getOutbTrxData” function

Start

Valid?

TrxMC Response:
Error data

IntDS ERR_CODE_ID
ERROR_CODE

TrxMC
Request data

validation

TrxMC: Error
IntDS

ERR_CODE_ID=23
Logfile:

Log[STrxMSS-INFO]

Y

N
End

TrxMC Response:
 getOutbTrxData

response data

Success?

TrxMC: Error
IntDS ERR_CODE_ID=11

Logfile: Log[STrxMSS-DB-ERR]

 Log[STrxMSS-INFO]

TrxMC:
 Log[STrxMSS-INFO]

Err

OK

TrxMC DB: Call PSQL SP
 get_outb_trx_data

4.1.2 Wallet Functions Workflows

Add New Wallet: “addNewWallet” function

Start

TrxMC Response:
Error data

IntDS
ERR_CODE_ID
ERROR_CODE

TrxMC: Error
IntDS

ERR_CODE_ID=22
Logfile:

 Log[STrxMSS-INFO]

End

TrxMC: Error
IntDS

ERR_CODE_ID=30
Logfile: Log[MCGAPI-

ERROR]

 Log[STrxMSS-INFO]

Err

OK

TrxMC Response:
 addNewWallet

response data

Valid?
TrxMC

Request data
validation

Call Mnemonic Code
Generator API,

Method: Generate
Mnemonic Code as

string Success?

Call 4S API,
Method: split

Success?

KeysMC DB: Call
PSQL Function

 add_mnm_parts

Success?

TrxMC: Error
IntDS ERR_CODE_ID=29

Logfile: Log[STrxMSS-DB-
ERR]

 Log[STrxMSS-INFO]

Success?

TrxMC: Error
IntDS

ERR_CODE_ID=31
Logfile: Log[STrxMSS-

DB-ERR]

 Log[STrxMSS-INFO]

TrxMC DB: Call
PSQL SP

 add_wallet

Err
Err

Err

OK
OK

OK

Y

N

TrxMC: Error
IntDS

ERR_CODE_ID=30
Logfile: Log[4SAPI-

ERROR]

 Log[STrxMSS-INFO]

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

103 | P a g e

Get Balance for Given Wallet: “getWalletBalance” function

Start

Valid?

TrxMC Response:
Error data

IntDS ERR_CODE_ID
ERROR_CODE

TrxMC
Request data

validation
Y

N

End

TrxMC DB: Call PSQL Func
 get_wallet_balance

Success?

TrxMC: Error
IntDS ERR_CODE_ID=1

Logfile: Log[STrxMSS-DB-ERR]

 Log[STrxMSS-INFO]
Err

OK

TrxMC Response:
 getWalletBalance

response data

TrxMC: Error
IntDS

ERR_CODE_ID=22
Logfile:

Log[STrxMSS-INFO]

Get Data Associated with Given Wallet: “getWalletData” function

Start

Valid?

TrxMC Response:
Error data

IntDS ERR_CODE_ID
ERROR_CODE

TrxMC
Request data

validation

TrxMC: Error
IntDS

ERR_CODE_ID=22
Logfile:

Log[STrxMSS-INFO]Y

N

End

TrxMC DB: Call PSQL SP
 get_wallet_data

Success?

Err

OK

TrxMC Response:
 getWalletData

response data

TrxMC: Error
IntDS ERR_CODE_ID=1

Logfile: Log[STrxMSS-DB-ERR]

 Log[STrxMSS-INFO]

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

104 | P a g e

Get Wallets Balances: “getWalletBalances” and “allWalletBalances” function

Start

Valid?

TrxMC Response:
Error data

IntDS ERR_CODE_ID
ERROR_CODE

TrxMC
Request data

validation for set of
wallet ids

Y

N

End

TrxMC DB: Call PSQL Func
 get_wallet_balance

Success? Err

OK

TrxMC Response:
 getWalletBalances

response data

TrxMC: Error
IntDS ERR_CODE_ID=1

Logfile: Log[STrxMSS-DB-ERR]

 Log[STrxMSS-INFO]

TrxMC: Error
IntDS

ERR_CODE_ID=22
Logfile:

Log[STrxMSS-INFO]

Choice?

TrxMC: Error
IntDS ERR_CODE_ID=1

Logfile: Log[STrxMSS-DB-ERR]

 Log[STrxMSS-INFO]

TrxMC: Error
IntDS

ERR_CODE_ID=22
Logfile:

Log[STrxMSS-INFO]

Valid?

TrxMC
Request data

validation for all
wallet ids

TrxMC DB: Call PSQL Func
 get_wallet_balance

Success?

TrxMC Response:
 allWalletBalances

response data

Get Balances for set of wallets Get Balances for all wallets

Y

N

Err

OK

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

105 | P a g e

4.1.3 Inbound Transactions Functions Workflows

Diagram Ps8. Create new Btc Address: “getNewBtcAddress” function
Diagram Ps5 is involved in this process from “Outbound Transaction Workflow” point.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

106 | P a g e

Find All Inbound Transactions for Given Bitcoin Address: “findInbTrxForBtcAddress” function

Start

Valid?

TrxMC Response:
Error data

IntDS ERR_CODE_ID
ERROR_CODE

TrxMC
Request data

validation

TrxMC: Error
IntDS

ERR_CODE_ID=22
Logfile:

Log[STrxMSS-INFO]

Y

N
End

TrxMC Response:
 findInbTrxForBtcAddress

response data

Success?

TrxMC: Error
IntDS ERR_CODE_ID=12

Logfile: Log[STrxMSS-DB-ERR]

 Log[STrxMSS-INFO]

TrxMC:
 Log[STrxMSS-INFO]

Err

OK

TrxMC DB: Call PSQL SP
 get_inb_trx_data

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

107 | P a g e

4.1.4 Warm Storage Functions Workflows

Diagram Pw0. High Level Diagram. Lock and Unlock Wallet Processes:

Start

External System Request
to IntDS

STrxMSS Interface: lockWallet

Success?
Err

End

External System

OK

IntDS
Response:

Wallet Status
 locked

Choice?

External System Request
to IntDS

STrxMSS Interface:
 unlockWallet

Pw1
IntDS Response
 lockWallet

Pw2
IntDS Response
 unlockWallet

Success?

IntDS
Response:

Wallet Status
 unlocked

IntDS
Response:
Wallet not

locked

IntDS
Response:

Wallet failed
to unlock

External system request to lock wallet External system request to unlock wallet

OK

Err

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

108 | P a g e

Diagram Pw1. Lock Wallet: “lockWallet” function

Start

Valid?

TrxMC Response:
Error data

IntDS ERR_CODE_ID
ERROR_CODE

TrxMC
Request data

validation

TrxMC: Error
IntDS

ERR_CODE_ID=22
Logfile:

Log[STrxMSS-INFO]Y

N
End

Temporary
Implementaion?

TrxMC Response:
 lockWallet
response data

TBD
For later phase (BIP
65 implementation)

TrxMC DB: Update record in
WALLETS table

For WALLET_ID = <Wallet ID from
request>:

DATE_UPDATED = <now>
IS_LOCKED = true

DATE_TO_UNLOCK = <date from
request>

Success?

TrxMC: Error
IntDS ERR_CODE_ID=14

Logfile: Log[STrxMSS-DB-ERR]

 Log[STrxMSS-INFO]

TrxMC:
 Log[STrxMSS-INFO]

Y

N

Pw1
IntDS Response
 lockWallet

Err

OK

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

109 | P a g e

Diagram Pw2. Unlock Wallet: “unlockWallet” function

Start

Valid?

TrxMC Response:
Error data

IntDS ERR_CODE_ID
ERROR_CODE

TrxMC
Request data

validation

TrxMC: Error
IntDS

ERR_CODE_ID=22
Logfile:

Log[STrxMSS-INFO]Y

N
End

Temporary
Implementaion?

TrxMC Response:
 unlockWallet

response data

TBD
For later phase (BIP
65 implementation)

TrxMC DB: Update record in
WALLETS table

For WALLET_ID = <Wallet ID from
request>:

DATE_UPDATED = <now>
IS_LOCKED = false

DATE_TO_UNLOCK = NULL

Success?

TrxMC: Error
IntDS ERR_CODE_ID=10

Logfile: Log[STrxMSS-DB-ERR]

 Log[STrxMSS-INFO]

TrxMC:
 Log[STrxMSS-INFO]

Y

N

Pw2
IntDS Response
 unlockWallet

Err

OK

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

110 | P a g e

4.1.5 Other Functions Workflows

Get data associated with particular error id: “getErrorData” function

Start

Valid?

TrxMC Response:
Error data

IntDS ERR_CODE_ID
ERROR_CODE

TrxMC
Request data

validation

TrxMC: Error
IntDS

ERR_CODE_ID=10
Logfile:

Log[STrxMSS-INFO]Y

N
End

TrxMC Response:
 getErrorData

response data

IntDS Shared Data DB: Table
INTDSSYTEM_ERROR_CODES

Select ERR_CODE_ID, ERROR_CODE,
ERROR_DESCR, SUBSYSTEM_ABBR
for <ERR_CODE_ID from request>

Success?

TrxMC: Error
IntDS ERR_CODE_ID=15

Logfile: Log[STrxMSS-DB-ERR]

 Log[STrxMSS-INFO]

TrxMC:
 Log[STrxMSS-INFO]

Err

OK

Get data associated with particular rejection message: “getRejectionMsgData” function

Start

Valid?

TrxMC Response:
Error data

IntDS ERR_CODE_ID
ERROR_CODE

TrxMC
Request data

validation

TrxMC: Error
IntDS

ERR_CODE_ID=10
Logfile:

Log[STrxMSS-INFO]Y

N
End

TrxMC Response:
 getRejectionMsgData

response data

IntDS Shared Data DB: Table
BTC_REJECTION_MSG

Select REJECT_MSG_ID,
REJECT_MSG_CODE,
REJECT_MSG_DESCR,

REJECTION_CATEGORY for
<REJECT_MSG_ID from request>

Success?

TrxMC: Error
IntDS ERR_CODE_ID=16

Logfile: Log[STrxMSS-DB-ERR]

 Log[STrxMSS-INFO]

TrxMC:
 Log[STrxMSS-INFO]

Err

OK

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

111 | P a g e

4.1.6 STrxMSS MQ Consumers and Producers Workflows
1. StrxMSS has three Consumers Threads:

- “InbTrxsDataThread” is consumer of messages from “mnts_to_strxmss_inb_trxs” queue

- “OutbTrxsDataThread” is consumer of messages from “mnts_to_strxmss_outb_trxs” queue

- “RejectMsgDataThread” is consumer of messages from “mnts_to_strxmss_reject_msg” queue

All threads are running in parallel independently according to the same logic. Diagram Pr0 shows general logic of

Consumer thread. There is Sub-process Pr1 which should be synchronized, because each thread is updating the same

DB table. See Diagram Pr1.

2. StrxMSS has three Producers. There are two simple Producers (see Ps3 and Ps8 diagrams) and one Producer

Thread “DelayedMsgThread”. There are some Delayed Messages which are stored into STrxMSS DB if simple

Producer cannot send them. Producer Thread receives binary objects of messages from DB and sends them to MQ

Exchange. Exchange routes and distributes messages between Queues. Diagram Pm0 shows “DelayedMsgThread”

logic.

Diagram Pr0. Consumer thread workflow:

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

112 | P a g e

Diagram Pr1. Save data from message in the STrxMSS DB

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

113 | P a g e

Diagram Pm0. “DelayedMsgThread” Producer Thread:

4.2 Accounting Transaction Management SubSystem Workflows
This point can be done in the scope of future development. Will need some researching activity.

4.3 Bank Transaction Management SubSystem Workflows
This point can be done in the scope of future development. Will need some researching activity.

4.4 Exchange Transaction Management SubSystem Workflows
This point can be done in the scope of future development. Will need some researching activity.

4.5 Message Transaction Management SubSystem Workflows
This point can be done in the scope of future development. Will need some researching activity.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

114 | P a g e

4.6 Contracts Management SubSystem Workflows
This point can be done in the scope of future development. Will need some researching activity.

4.7 Monitoring System Workflows
Monitoring system (MntS) is in charge of monitoring following items and sending appropriate messages to the MQ:

- the blockchain

- incoming transactions

- outgoing transactions from the system.

Refer section 3.8 for details of the database used by MntS.

MntS tasks can be summarized as follows:

- Download blockchain data into local files

- Store block data in MntS database

- Periodically update the database to simulate the blockchain i.e. Build local copy of the blockchain

- Keep monitoring for incoming and outgoing transactions

- Keep monitoring log files.

Following flow diagram summarizes these various monitoring tasks of MntS:

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

115 | P a g e

Following subsections describe each of these monitoring tasks in detail. Each task is accompanied with respective

work flow diagram(s) and corresponding description.

MntS flow diagrams are all interconnected. Hence off-page connectors () are used to connect all these diagrams

together.

Note: The flow diagrams cover the overall flow of each task. Detailed error handling, logging and generic conditions

are not covered. Developers are expected to implement these by default.

4.7.1 Build local blockchain (system start up for first time)
IntDS needs to store block information from the main blockchain locally. In order to do this, MntS needs to store

required information in MntS database when system starts for the first time. This is a one-time process and will be

implemented only when the system starts for the first time. This task will be undertaken by the MntS thread ‘Sys.

Start Thread’.

For all times after that, only the latest block(s) will be downloaded and analysed.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

116 | P a g e

Details of each step:

Download blockchain into local files

When the system starts for the first time, entire blockchain will be downloaded into local files. To get a copy of the

blockchain locally, it is necessary to run the official bitcoin blockchain application called ‘Bitcoin-QT’. Bitcoin-QT

stores the blockchain information in a series of .dat files.

The raw blockchain data files are stored in the following locations on the hard drive:

Linux: ~/.bitcoin/blocks

MacOS: ~/Library/Application Support/Bitcoin/blocks

Windows: %APPDATA%Bitcoin\blocks

WinXP: C:\Documents and Settings\YourUserName\Application data\Bitcoin\blocks

Win7/Win8/Vista: C:\Users\YourUserName\AppData\Roaming\Bitcoin\blocks

They will appear as a series of 128mb files blk00000.dat through blk00???.dat.

Each blk00*.dat file is a collection of several raw blocks. Refer section 9.1 for format of a block.

Store downloaded block data in MntS database

Once .dat files have been downloaded, MntS can start parsing the block data and updating the BLOCKS table from

the monitoring system database.

The BLOCKS table has following columns:

BLOCK_INDEX, BLOCK_HASH, BLOCK_HEIGHT, PREV_BLOCK_HASH, BLOCK_TIMESTAMP,

DATE_CREATED_TIMESTAMP

Hence, we need to extract all the relevant information from each .dat file and store in respective fields in BLOCKS

table.

Block structure can be summarized as follows:

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

117 | P a g e

(Reference: [2.26])

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

118 | P a g e

1. Sys. Start Thread will scan through each downloaded .dat file and process block data.

2. The blocks are separated by a block separator (known as ‘magic id’).

3. Once a block has been identified (based on occurrence of magic id), get the bytes that form blockheader.

4. For every block, identify the blockheader and compute corresponding blockhash. Blockheader consists of the

80 bytes from version number to nonce. BlockHash is computed as the SHA256 double hash of the

blockheader.

Following is the breakdown of Blockheader at byte level. Refer section 9.1 for a detailed explanation.

5. Store blockhash, previous blockhash and block timestamp in BLOCKS table.

6. Constants used during this processing:

MAGIC_ID = 0xD9B4BEF9

MAX_BLOCK_SIZE = 1 MB

Blockheader part Length in Bytes Byte location in the

Blockheader (starting at 0)

Version number 4 0-3

Previous Block Hash 32 4-35

Merkle Root Hash 32 36-67

Timestamp 4 68-71

Target Difficulty 4 72-75

Nonce 4 76-79

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-03-0

Date: 2024-01-25

119 | P a g e

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

120 | P a g e

7. Once blockheader is read, skip to the file location denoted by blocklen value.

8. This is because we are storing only the block data at this stage. Remaining bytes consist of transaction data

for this particular block. Hence we can skip through this portion of the block and proceed to next block once

blockheader is processed.

9. Scan for next magic id occurrence and repeat the processing of blockheader for each block. If EOF is reached,

open next file for processing.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

121 | P a g e

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

122 | P a g e

Build local copy of blockchain

After the above steps are done, the BLOCKS table will contain block data from all the downloaded dat files.

Next, the BLOCKS table will be sorted such that it resembles the blockchain. Starting with the most recent block in

the blockchain, genesis block will be the bottom-most block in the BLOCKS table.

1. Find genesis block in the table (Genesis Block hash =

000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f) and assign corresponding

BLOCK_HEIGHT field as 0.

2. Find next block such that block hash of previous block found matches with value in PREV_BLOCK_HASH field of

this block. Increment corresponding BLOCK_HEIGHT value by 1.

3. Repeat this process till the last block downloaded (i.e. there will be no block with PREV_BLOCK_HASH field same

as this block’s hash).

Note: There can be more than 1 block with same height and same parent (PREV_BLOCK_HASH field). Only one of

these blocks will be part of the main blockchain. The other block will become “orphan block”.

Everytime MntS downloads latest block(s), they will be added to the top of the table with PREV_BLOCK_HASH field

matching with previous hash of block.

Constants:

Genesis Block hash = 000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

123 | P a g e

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

124 | P a g e

4.7.2 Update local blockchain and scan transaction data

The MntS thread (Sync. Thread) will sync with the main blockchain periodically (every 3 minutes). The BLOCKS table

will be updated if new block(s) is downloaded.

MntS will store last .dat file it had processed. Sync. Thread will pick up .dat(s) file created after the last processed

file. Blocks from the new .dat file(s) will be scanned and relevant information will be updated in the BLOCKS table.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

125 | P a g e

Unlike building blockchain at system startup, we will need to analyse transaction data of each block while updating

the blockchain. This is because we need to check for incoming and outgoing transactions in every block. Hence, after

processing and storing blockheader information, transaction data will be scanned for every downloaded block.

Each transaction will be checked if it is an incoming transaction or not. The Inc. Thread will be invoked ONLY if

transaction is found to be incoming.

However, Out. Thread will be invoked for every transaction.

Each transaction will be checked in the following sequence:

- Check if it is an incoming transaction.

To identify incoming transactions, MntS will check if value of destination address in any of the outputs is same as any

of the btc addresses generated by IntDS. Btc addresses generated by IntDS will be stored in

STRXMSS_MONITORED_BTC_ADDR table.

- Calculate transaction hash.

- Invoke Inc. Thread & Out. Thread.

o Inc. Thread will be launched to monitor this transaction only if the transaction is found to be

incoming.

Incoming transactions will be monitored for:

▪ confirmations (till it reaches a value equal to greater than 6)

▪ BTC amount received (till it reaches a value greater than or equal to expected BTC amount)

o Invoke Out. Thread.

Out. Thread will check transaction hash of every transaction that is included in the block and compare it with the

transaction hashes that were generated by IntDS (stored in table STRXMSS_MONITORED_TRXS). If match is found, it

means that a transaction sent by IntDS was included in this block. If match is not found, Out. Thread will check if the

transaction has been sitting in the mempool for a week or more.

Outbound transactions will be monitored for:

▪ transaction stuck in mempool for long (not included in the blockchain for a week or more

after transaction creation)

▪ confirmations (till it reaches a value equal to greater than 6)

Incoming transactions to the system are the transactions which have destination address that matches with the

BTC_ADDRESS field in the STRXMSS_MONITORED_BTC_ADDR table. MntS will fill all fields in

STRXMSS_MONITORED_BTC_ADDR table (except BTC_AMOUNT_PAID) with appropriate values received from MQ.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

126 | P a g e

In order to check if the transaction is incoming, MntS will check if btc address in the scriptPubKey of every output

matches with any value of BTC_ADDRESS field in the STRXMSS_MONITORED_BTC_ADDR table. Detailed steps of this

process are as follows:

For every transaction in newly downloaded block(s):

1. Compare destination address in every output of the transaction with all values in the BTC_ADDRESS field from

STRXMSS_MONITORED_BTC_ADDR table.

a. To get to the outputs of a transaction, we need to go through all the inputs first, since the output count

is located after the last input.

b. Once we get to the output count, go through each output and decode the ScriptPubKey to get the

destination address. Compare this address with every value in the BTC_ADDRESS field from

STRXMSS_MONITORED_BTC_ADDR table. (Refer: Subproc Decode op_script).

c. If match found: check if the value in this output is equal to the expected amount.

- If yes, move this transaction record from STRXMSS_MONITORED_TRXS to ARCHIVE.

- If value is less than expected amount, update the BTC_AMOUNT_PAID field with actual value received.

Do not move the record to ARCHIVE, so that MntS will continue monitoring this address.

- Identify this transaction as an Incoming transaction.

- Store the btc address identified as the destination address alongwith value 126ubscrip (in an appropriate

data structure).

2. Once all outputs of a transaction have been scanned for destination address, calculate the transaction hash of

this transaction. At this point, following threads will be invoked:

- Inc. Thread will monitor confirmations if the transaction is identified as “Incoming’ in step 1c.

- Out. Thread will check if the transaction is outbound and monitor confirmations if it is.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

127 | P a g e

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

128 | P a g e

Sub processes involved in above flow:

1. Subproc: Calculate transaction hash

- Transaction hash is calculated by taking the double hash of all raw bytes from transaction version

number of current transaction to the beginning of the next transaction or end of block.

- Since we have already read the transaction version in the main flow above, we have its file pointer

location (f_start).

- We also have the file pointer after reading transaction locktime (f_end).

- Check if the transaction is the last transaction in the block.

o If it is, go to the end of the block. Let the file pointer location be f_end.

o If not, continue.

- Compute the double hash of all bytes from f_start to f_end. This is the transaction hash.

- Convert it to big endian form.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

129 | P a g e

Subproc: Decode op_script to get destination address

- Since we deal with P2PKH addresses, the length of op_script should always be 25 bytes.

Following is the breakdown of a P2PKH scriptPubKey at byte level. Refer section 8.1.2 for a detailed explanation.

Script part Length in Bytes Byte location in the

scriptPubKey (starting at 0)

OP_DUP (0X76) 1 0

OP_HASH (0XA9) 1 1

Length of PubKeyHash 1 2

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

130 | P a g e

PubkeyHash 20 3-22

OP_EQUALVERIFY (0X88) 1 23

OP_CHECKSIG (0XAC) 1 24

- The btc address can be extracted from a P2PKH op_script as follows:

o Public key hash (pubkey_hash) = op_script [3] – op_script[22]

o Checksum hash = Append 0X00 to pubkey_hash. Take double hash of the result.

o Checksum (checksum) = First 4 bytes of the Checksum hash

o btc address (btc_addr) = Concatenate 0x00 with pubkey_hash and checksum

i.e. btc_addr = 0x00 + pubkey_hash+checksum

o Convert the result into decimal and then Base58 encode it to get the final bitcoin address.

Note: Need to verify this during implementation.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

131 | P a g e

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

132 | P a g e

Note: In case of errors (system or database) during scanning transaction data, the flow will just skip further

processing and proceed to next output in the transaction. Manual debugging of transaction data based on

information in log files might be needed in this case.

4.7.3 Monitor incoming transactions
If transaction is found to be incoming, the Inc. Thread will be invoked to monitor confirmations for this transaction.

When confirmations reach 6 or more, the transaction will no longer be monitored.

Detailed steps are as follows:

10. Inc. Thread will be invoked for one of the btc_addr that was found to have incoming funds from this

transaction. Note that one transaction may have multiple btc_addr that have incoming funds. However any

one of these addresses is sufficient for processing following steps. This is because MntS monitors

confirmations of a transaction and not of a btc address.

11. Get the corresponding record in STRXMSS_MONITORED_INB_TRXS table (from btc_addr received from sub

procedure above).

12. From BLOCK_INDEX value, get corresponding record in BLOCKS table and get the BLOCK_HEIGHT.

13. Get the block height for latest block in BLOCKS table.

14. Calculate confirmation by taking difference of these 2 heights.

15. Launch a child thread to keep checking confirmations if confirmations value is less than 6.

16. When confirmations reach 6 or more, send message to MQ, move records from

STRXMSS_MONITORED_BTC_ADDR to Archive and delete corresponding records from

STRMSS_MONITORED_INB_TRXS, STRMSS_INB_TRXS_BTC_ADDR tables.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

133 | P a g e

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

134 | P a g e

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

135 | P a g e

4.7.4 Monitor outbound transactions
Outbound transactions are the transactions that are sent from the system.

STrxMSS Thread will pick these transactions from MQ. These transactions will be stored in the

STRXMSS_MONITORED_TRXS table until they get 6 confirmations. Upon receiving 6 (or more) confirmations, a

message will be sent to MQ and the record will be moved to Archive table.

For each transaction from STRXMSS_MONITORED_TRXS table:

1. Check if the Daemon_Txid_hash value matches with the transaction hash obtained in the main flow.

2. If match not found in step 1, it means that this outbound transaction was not included in this block. Check if

the transaction has been in the mempool for more than 1 week (by comparing the created timestamp and

current timestamp). If yes, send message to MQ. If not, continue to next record.

3. If match found in step 1, it means that the outbound transaction has been included in this block. Get the

block index corresponding to transaction id.

4. Get the block height from BLOCKS table corresponding to the block index.

(Note that STRXMSS_MONITORED_TRXS.BLOCK_INDEX may already be existing if this transaction was part of a fork.

Hence replace any existing value during processing this step.)

5. Get the block height of latest block from the BLOCKS table.

6. Calculate difference in block heights from above steps. Check if difference is greater than or equal to 6.

a. If yes:

- Check if there are any change bitcoins and / or system fees associated with this transaction.

o if yes, append respective message for MQ

- Send a message to MQ for transaction confirmation

- Move the record from STRXMSS_MONITORED_TRXS to ARCHIVE table only if there was change btc

or system fees involved. This is because the Archive table will have all btc addresses previously being

used for monitoring. If there was no change btc or system fees, no btc address need to be monitored

from this transaction.

b. If not, continue monitoring. Do not move the record to ARCHIVE, so that MntS will continue monitoring this

transaction.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-08-0

Date: 2024-01-25

136 | P a g e

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

137 | P a g e

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

138 | P a g e

Some Scenarios for Outbound transactions:

1. Blockchain Fork

Note that a transaction will be returned to the mempool in the event of a fork.

Example scenario:

An IntDS outbound transaction is included in a block. Another block is mined at the exact same time. The second

block becomes part of the main blockchain, making the first block orphan. All transactions that were included in the

first block will be returned to the mempool. Thus our outbound transaction will appear in the mempool, as if it was

never included in any block.

MntS handling:

Since MntS checks for inclusion of outbound transactions in every new block and since the transaction will remain in

the STRXMSS_MONITORED_TRXS table till it gets 6 confirmations, this transaction will be available for monitoring

when it is part of a new block.

When MntS will begin monitoring this transaction from new block, it will most probably encounter the thread that is

still checking for confirmations on the orphan block. When this happens, MntS will stop the previous thread and

create new one to monitor the transaction in the main blockchain.

2. Transaction not included in a block for long time

Example scenario:

IntDS sends an outbound transaction. But this transaction does not get included in a block for considerable amount

of time (1 week or more).

MntS handling:

MntS will continue monitoring this transaction. However, MntS will send a message to MQ stating the transaction

hash and error code so that STrxMSS knows that this particular transaction has been sitting in the mempool for long.

Note that at this point, IntDS will not re-broadcast or do anything else to counteract this situation. It will just store

information in the database about this transaction.

Once 6 confirmations are reached, MntS will send appropriate message to MQ just like normal outbound

transcation.

3. Transaction rejected by blockchain

Refer section 4.7.5.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

139 | P a g e

4.7.5 Monitor log files
Monitor debug logs for reject messages

An outbound message when sent over the P2P network, can be rejected by one or more peers.

BIP-61 [2.25] was introduced to provide feedback to peers about why their blocks or transactions were rejected. For

IntDS, this is of relevance if any of the system’s outbound transactions are rejected. In this case, system will have to

scan the reject message received from the peer and store all relevant information in the database.

There are 3 categories for reject message according to BIP-61 [2.25]:

1. version

2. transaction

3. block

Currently, MntS will monitor only transaction reject messages i.e. it will monitor which outbound transactions have

been rejected by one or more peers.

The FOS Core Daemon component will be modified to create debug log files for MntS. Refer Section 2.11.2 for details

about the log files generated. The reject messages will be logged in MntS-DEBUG log files.

Record format for reject message:

Each record in the file will be a separate line. The format of the record will be as follows:

MessageType: Category: Code: Reason: Hash

Example:

Reject: Tx: 0x10: Transaction is invalid:

Hash_d1231fa2bcec333cef9565bb26ab2e651d3988a6b4129efddd649c4cea6e3815

Details of each field in the record:

MessageType = the message type of the P2P network message received from peer(s). The first character will be

uppercase.

Example: For a BIP-61 message the MessageType will be “Reject”.

Category = Specific category of the message.

For example: For a BIP-61 message, there can be following values for Category:

1. version

2. tx

3. block

Code = specific code generated for a category.

https://blockchain.info/tx/d1231fa2bcec333cef9565bb26ab2e651d3988a6b4129efddd649c4cea6e3815

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

140 | P a g e

Refer the table below for codes generated for each of the 3 categories:

Reason = human readable message for debugging. This can be the text given in the Description column in the above

table.

Example: For code 0x12 for category “tx”, reason will be “An input is already spent”.

Hash = transaction or block hash that is being rejected. This is an optional field and will be present only in case of

transaction or block rejection.

This field will start with the string “Hash” followed by underscore and then the actual transaction hash.

Example: Hash_d1231fa2bcec333cef9565bb26ab2e651d3988a6b4129efddd649c4cea6e3815

Details of the process:

MntS thread (Log Thread) will periodically (every 3 minutes) monitor the MntS debug log files for reject messages

and send message to MQ if reject message is found. This monitoring will start after the system sends its first

outbound transaction.

Log thread when started, will first check if there are any log files generated after the last read timestamp.

Category: version

Code Description

0x11 Client is an obsolete, unsupported version

0x12 Duplicate version message received

Category: tx

Code Description

0x10 Transaction is invalid for some reason (invalid signature, output value greater than input, etc.)

0x12 An input is already spent

0x40 Not mined/relayed because it is “non-standard” (type or version unknown by the server)

0x41 One or more output amounts are below the ‘dust’ threshold

0x42 Transaction does not have enough fee/priority to be relayed or mined

Category: block

Code Description

0x10 Block is invalid for some reason (invalid proof-of-work, invalid signature, etc)

0x11 Block’s version is no longer supported

0x43 Inconsistent with a compiled-in checkpoint

https://blockchain.info/tx/d1231fa2bcec333cef9565bb26ab2e651d3988a6b4129efddd649c4cea6e3815

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

141 | P a g e

- If not, stop

- If yes, Log thread will scan each file. Every line will be parsed as follows:

o Check if Message Type = Reject

• If not, continue

• If yes, check if Category = ‘tx’

o If not, continue

o If yes: Extract the code, reason and hash. Send message to MQ.

- Store the timestamp of reading log file(s).

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

142 | P a g e

4.7.6 Monitor archived addresses

MntS will also have to monitor all transactions/btc addresses stored in Archive table.

This section will be filled after the archiving policy has been decided for IntDS system.

Archive table / databse should contain all addresses that have been used up previously for receiving btc. This

includes:

• btc addresses used for incoming transactions

• system addresses used for receiving system fees

• change addresses used for receiving change btc from an outgoing transaction

Althought IntDS will generate new btc address everytime to receive new btc, sender(s) can still send btc to an old /

already used btc address. There is no way to stop anyone to send btc to a valid btc address. Hence IntDS will archive

all addresses that the system uses for receiving btc.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

143 | P a g e

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

144 | P a g e

5. Intelligent Daemon System Interfaces
Some of the sub-systems must provide interfaces to access its functionality according to Microservice

architecture approach. The interface implementation must satisfy RESTful specification requirements.

Jersey implementation of JAX-RS should be used for development. The sections below provide detailed

information about sub-systems interfaces.

The following notation is used

• <…> - required parameters

• […] – optional parameters

The Restful URI call must be in the following format:

1. STrxMSS Interface URI: https://[Load Balancer Host Name]/StrxMssService/[Function Name]

2. DmnCS Interface URI: https://[Load Balancer Host Name]/bitcoinService/[Function Name]

The following notation is used

• Load Balancer Host Name – hostname that points to the master node in load balancing layer

• Function Name – The name from the first column of the table

All Functions should be called via HTTPS POST

Parameters must be pasted in HTTPS request body in the following format:

[Parameter1], [Parameter2], … , [ParameterN]

5.1 Single-sig Transaction Management SubSystem Interface
Current paragraph provides description of RESTful Web Service which is responsible for STrxMSS interface. All the

requests to STrxMSS from external systems are coming via this interface. External systems as clients should send

POST request to web service.

Note: This description should be updated after creation of class diagrams. Mapping between functions

names and Java classes/methods should be included later.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

145 | P a g e

5.1.1 Wallet Functions

getWalletBalance
Function returns information about Wallet balances and “Warm Storage” flag by given Wallet Identifier from

STrxMSS DB or error’s data in case system error.

Request
Parameters

Response
Parameters

Response Type Java Class (including
package)

Java Method

<daemonWalletId> <daemonWalletId>,
<currentBalance>,
<availableBalance>,
<isLocked>

JSONObject

Error Response:
<errCodeId>,
<error>

Request Parameters:

Parameter Java
Type

Length Required STrxMSS DB
mapping

Example Description

daemonWalletId String min 4
chars, max
60 chars

mandatory Table: WALLETS
Field: WALLET_ID
Type: UUID

067e6162-3b6f-
4ae2-a171-
2470b63dff00

Wallet identifier
in the STrxMSS
DB

Response Parameters in JSONObject:

Parameter Java Type STrxMSS DB mapping Example Description
daemonWalletId String Table: WALLETS

Field: WALLET_ID
Type: UUID

067e6162-3b6f-
4ae2-a171-
2470b63dff00

Wallet Identifier in the
STrxMSS DB.

currentBalance BigDecimal Table: WALLETS
Field: BTC_BALANCE

1.45 Total Wallet balance. “0.0” by
default

availableBalance BigDecimal Table: WALLETS
Field:
BTC_AVAILABLE_FUNDS

0.45 Available funds which can be
used in new wallet
transactions. “0.0” by default.

isLocked int Table: WALLETS
Field: IS_LOCKED

1 True (1) if wallet funds are
locked in “Warm Storage” trxs
otherwise false (0). “0” by
default.

Error Response

errCodeId int Table: ERROR_CODES
Field: ERR_CODE_ID

1 System Error Identifier in the
STrxMSS DB.

Error String Table: ERROR_CODES
Field: ERROR_CODE

“Balance
calculation error”

System Error Code

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

146 | P a g e

Examples:

Function Call Java Request Example for POST Response Example

https://[Load Balancer
Host
Name]/StrxMssService/
getWalletBalance

String input = “{\”daemonWalletId
\”:\”067e6162-3b6f-4ae2-a171-
2470b63dff00\”}”;

{“daemonWalletId”: “067e6162-3b6f-4ae2-
a171-2470b63dff00”,
“currentBalance”:”1.45”,
“availableBalance”:”0.45”,
“isLocked”: 1
}

Error example:
{ “errCodeId”: 1, “error”: “Balance calculation
error” }

getWalletsBalances
Function returns information about Wallets balances and “Warm Storage” flags by given list of Wallets Identifiers

from STrxMSS DB or error’s data in case system error.

Request
Parameters

Response
Parameters

Response Type Java Class (including
package)

Java Method

<daemonWalletIds>

<daemonWalletId>,
<currentBalance>,
<availableBalance>,
<isLocked>

Type: JSONArray
each array
member is
JSONObject

Error Response:
<errCodeId>,
<error>

Request Parameters:

Parameter Java
Type

Length Required STrxMSS DB
mapping

Example Description

daemonWalletIds List,
Type of
each list
object is
String

For each
String:
min 4
chars, max
60 chars

mandatory Table: WALLETS
Field:
WALLET_ID
Type: UUID

067e6162-3b6f-
4ae2-a171-
2470b63dff00

Each list
element is
Wallet
Identifier from
STrxMSS DB

Response Parameters in JSONObject:

Parameter Java Type STrxMSS DB mapping Example Description
daemonWalletId String Table: WALLETS

Field: WALLET_ID
Type: UUID

067e6162-3b6f-
4ae2-a171-
2470b63dff00

Wallet Identifier from STrxMSS
DB.

currentBalance BigDecimal Table: WALLETS
Field: BTC_BALANCE

1.45 Total Wallet balance. “0.0” by
default.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

147 | P a g e

availableBalance BigDecimal Table: WALLETS
Field:
BTC_AVAILABLE_FUNDS

0.45 Available funds which can be
used in new Wallet
transactions. “0.0” by default.

isLocked int Table: WALLETS
Field: IS_LOCKED

1 True (1) if wallet funds are
locked in “Warm Storage” trxs
otherwise false (0). “0” by
default.

Error Response

errCodeId int Table: ERROR_CODES
Field: ERR_CODE_ID

1 System Error Identifier in the
STrxMSS DB.

Error String Table: ERROR_CODES
Field: ERROR_CODE

“Balance
calculation error”

System Error Code

Examples:

Function Call Java Request Example for POST Response Example

https://[Load
Balancer Host
Name]/StrxMssSer
vice/getWalletsBal
ances

List<String> daemonWalletIds =
Arrays.asList(“067e6162-3b6f-4ae2-a171-
2470b63dff00”, “067e6162-3b6f-4ae2-a171-
2470b63dff00”, …);
JSONObject entity = new JSONObject();
JSONArray entityParams = new JSONArray();
entityParams.addAll(daemonWalletIds);
entity.put(“daemonWalletIds”,
entityParams);

JASONArray of JASONObjects
[{“daemonWalletId”: “067e6162-3b6f-
4ae2-a171-2470b63dff00”,
“currentBalance”:”1.45”,
“availableBalance”:”0.45”,
“isLocked”: 1
}, …]

Error example:
{ “errCodeId”: 1, “error”: “Balance
calculation error” }

allWalletsBalances
Function returns information about all system Wallets balances and “Warm Storage” flags or error’s data in case

system error.

Request
Parameters

Response
Parameters

Response Type Java Class (including
package)

Java Method

N/A

<daemonWalletId>,
<currentBalance>,
<availableBalance>,
<isLocked>

Type: JSONArray
each array member
is JSONObject

Error Response:
<errCodeId>, <error>

Response Parameters in JSONObject:

Parameter Java Type STrxMSS DB mapping Example Description

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

148 | P a g e

daemonWalletId String Table: WALLETS
Field: WALLET_ID
Type: UUID

067e6162-3b6f-
4ae2-a171-
2470b63dff00

Wallet Identifier from STrxMSS DB

currentBalance BigDecimal Table: WALLETS
Field: BTC_BALANCE

1.45 Total Wallet balance. “0.0” by
default.

availableBalance BigDecimal Table: WALLETS
Field:
BTC_AVAILABLE_FUNDS

0.45 Available funds which can be used
in new Wallet transactions. “0.0”
by default.

isLocked int Table: WALLETS
Field: IS_LOCKED

1 True (1) if Wallet funds are locked
in “Warm Storage” trxs otherwise
false (0). “0” by default.

Error Response

errCodeId int Table: ERROR_CODES
Field: ERR_CODE_ID

1 System Error Identifier in the
STrxMSS DB.

Error String Table: ERROR_CODES
Field: ERROR_CODE

“Balance
calculation
error”

System Error Code

Examples:

Function Call Response Example

https://[Load Balancer Host
Name]/StrxMssService/allWalletsBalance
s

JASONArray of JASONObjects
[{“daemonWalletId”: “067e6162-3b6f-4ae2-a171-2470b63dff00”,
“currentBalance”:”1.45”,
“availableBalance”:”0.45”,
“isLocked”: 1
}, …]

Error example:
{ “errCodeId”: 1, “error”: “Balance calculation error” }

addNewWallet
Function creates new Wallet and returns Wallet Identifier from the STrxMSS DB and user’s part of mnemonic seed

which should not be stored in the DB or error’s data in case system error.

Request
Parameters

Response
Parameters

Response
Type

Java Class (including
package)

Java Method

isSystemWallet

<daemonWalletId>,
<mnmSeedUserPart>

JSONObject

Error Response:
<errCodeId>, <error>

Request Parameters:

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

149 | P a g e

Parameter Java
Type

Length Required STrxMSS DB
mapping

Example Description

isSystemWallet int 0 or 1 mandatory Table: WALLETS
Field:
IS_SYSTEM_WALLET
Type: boolean

0 True (1) if this
Wallet is
Company
Wallet
otherwise false
(0). False (0) by
default.

Response Parameters in JSONObject:

Parameter Java Type STrxMSS DB mapping Example Description
daemonWalletId String Table: WALLETS

Field: WALLET_ID
Type: UUID

067e6162-3b6f-4ae2-
a171-2470b63dff00

Wallet Identifier from
STrxMSS DB

mnmSeedUserPart String N/A asdfgjhgjads User’s part of mnemonic
seed.

Error Response

errCodeId int Table: ERROR_CODES
Field: ERR_CODE_ID

2 System Error Identifier in the
STrxMSS DB.

Error String Table: ERROR_CODES
Field: ERROR_CODE

“Wallet creation
error”

System Error Code

Examples:

Function Call Response Example

https://[Load Balancer Host
Name]/StrxMssService/addNewWallet

{
“daemonWalletId”:” 067e6162-3b6f-4ae2-a171-2470b63dff00”,
“mnmSeedUserPart”:” asdfgjhgjads”
}

Error example:
{ “errCodeId”: 2, “error”: “New Wallet creation error” }

getWalletData
Function returns information about Wallet by given Wallet Identifier from STrxMSS DB or error’s data in case system

error.

Request
Parameters

Response
Parameters

Response
Type

Java Class (including
package)

Java Method

<daemonWalletId> <daemonWalletId>,
<currentBalance>,

JSONObject

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

150 | P a g e

<availableBalance>,
<isLocked>,
<isSystemWallet>,
<dateCreated>,
<numberInbTrxs>,
<numberOutbTrxs>

Error Response:
<errCodeId>, <error>

Request Parameters:

Parameter Java
Type

Length Required STrxMSS DB
mapping

Example Description

daemonWalletId String min 4
chars, max
60 chars

mandatory Table: WALLETS
Field: WALLET_ID
Type: UUID

067e6162-3b6f-
4ae2-a171-
2470b63dff00

Wallet identifier
in the STrxMSS
DB

Response Parameters in JSONObject:

Parameter Java Type STrxMSS DB mapping Example Description
daemonWalletId String Table: WALLETS

Field: WALLET_ID
Type: UUID

067e6162-3b6f-
4ae2-a171-
2470b63dff00

Wallet Identifier in the
STrxMSS DB.

currentBalance BigDecimal Table: WALLETS
Field: BTC_BALANCE

1.45 Total Wallet balance. “0.0” by
default

availableBalance BigDecimal Table: WALLETS
Field:
BTC_AVAILABLE_FUNDS

0.45 Available funds which can be
used in new wallet
transactions. “0.0” by default.

isLocked int Table: WALLETS
Field: IS_LOCKED

1 True (1) if wallet funds are
locked in “Warm Storage” trxs
otherwise false (0). “0” by
default.

isSystemWallet int Table: WALLETS
Field:
IS_SYSTEM_WALLET

0 True (1) if wallet owner is
IntDS otherwise false (0). “0”
by default.

dateCreated String Table: WALLETS
Field: DATE_CREATED

18:10 25-07-2014 Wallet creation date and time
in IntDS

numberInbTrxs int STrxMSS calculation
according to data from
WALLETS_TRANSACTION
and TRANSACTIONS
tables

0 Number of Inbound
transactions in this Wallet.
“0” by default.

numberOutbTrxs int STrxMSS calculation
according to data from

1 Number of Outbound
transactions in this Wallet.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

151 | P a g e

WALLETS_TRANSACTION
and TRANSACTIONS
tables

“0” by default.

Error Response

errCodeId int Table: ERROR_CODES
Field: ERR_CODE_ID

3 System Error Identifier in the
STrxMSS DB.

Error String Table: ERROR_CODES
Field: ERROR_CODE

“Wallet was not
found”

System Error Code

Examples:

Function Call Java Request Example for POST Response Example

https://[Load Balancer
Host
Name]/StrxMssService/
getWalletData

String input = “{\”
daemonWalletId\”:\”067e6162-
3b6f-4ae2-a171-2470b63dff00\”}”;

{“daemonWalletId”: “067e6162-3b6f-4ae2-
a171-2470b63dff00”,
“currentBalance”:”1.45”,
“availableBalance”:”0.45”,
“isLocked”: 1,
“isSystemWallet”: 0,
“dateCreated”: “18:10 25-07-2014”,
“numberInbTrxs”: 0
“numberOutbTrxs”: 1
}

Error example:
{ “errCodeId”: 3, “error”: “Wallet was not
found” }

 Error example:
{ “errCodeId”: 4, “error”: “Wallet signature
validation error” }

5.1.2 Outbound Transaction Functions

getTrxStatus
Function returns information about Transaction status by given Trx Identifier from STrxMSS DB or error’s data in case

system error.

Request
Parameters

Response
Parameters

Response
Type

Java Class (including
package)

Java Method

<daemonTrxId> <daemonTrxStatus>

JSONObject

Error Response:
<errCodeId>, <error>

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

152 | P a g e

Request Parameters:

Parameter Java
Type

Length Required STrxMSS DB
mapping

Example Description

daemonTrxId String min 4
chars, max
60 chars

mandatory Table:
TRANSACTIONS
Field: TRX_ID
Type: UUID

067e6162-3b6f-
4ae2-a171-
2470b63dff00

Transaction
identifier in the
STrxMSS DB

Response Parameters in JSONObject:

Parameter Java Type STrxMSS DB mapping Example Description
daemonTrxStatus String Table: TRX_STATUSES

Field: STATUS
“Pending” Transaction Status

Error Response

errCodeId int Table: ERROR_CODES
Field: ERR_CODE_ID

5 System Error Identifier in the
STrxMSS DB.

Error String Table: ERROR_CODES
Field: ERROR_CODE

“Status was not
found”

System Error Code

Examples:

Function Call Java Request Example for POST Response Example

https://[Load Balancer
Host
Name]/StrxMssService/g
etTrxStatus

String input =
“{\”daemonTrxId\”:\”067e6162-
3b6f-4ae2-a171-2470b63dff00\”}”;

{“daemonTrxStatus”: “Pending”}

Error example:
{ “errCodeId”: 5, “error”: “Status was not
found” }

createSingleSigTrx
Function prepared Outbound transaction before send it to the block chain. All Inputs and Outputs of this transaction

are correspond to P2PKH type only. Function returns IntDS trx identifier with trx status “In Progress”, Miner and

IntDS fees for confirmation by External system or error’s data in case system error.

Request Parameters Response
Parameters

Response
Type

Java Class
(including package)

Java Method

<externalTrxId>,
<fromDaemonWalletId>,
<toRecepients>(
{<toBtcAddress>,
<btcAmount>}
…
),

<externalTrxId>,
<tempTrxId>,
<isMinerFeeEnough>
[minerFee],
[intDSFee],
<daemonTrxStatus>

JSONObject

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

153 | P a g e

[priorityFee],
<externalPartMnmSeed>

Error Response:
<errCodeId>, <error>

Request Parameters:

Parameter Java
Type

Lengt
h

Required STrxMSS
DB
mapping

Example Description

externalTrxId String min 4
chars,
max
60
chars

mandatory N/A 067e6162-3b6f-
4ae2-a171-
2470b63dff00

Transaction
identifier from the
External system

fromDaemonWall
etId

String min 4
chars,
max
60
chars

mandatory Table:
WALLETS
Field:
WALLET_ID
Type: UUID

333e6162-3b6f-
4ae2-a171-
2470b63dff00

Wallet identifier in
the STrxMSS DB. Btc
funds is sent from
this wallet

toRecepients JSONArra
y

 mandatory JSON array of
recepients Btc
addresses and Btc
amount to be sent.
Each array member
has a JASONObject
type as:
{“toBtcAddress”:

“16UwLL9Risc3QfP
qBUvKofHmBQ7w
MtjvM”,
“btcAmount”: “1.1”}

toBtcAddress String min 4
chars,
max
50
chars

mandatory Table:
OUTPUTS
Field:
BTC_ADDR
ESS
Type:
varchar(50)

16UwLL9Risc3QfP
qBUvKofHmBQ7
wMtjvM

Btc address of the
Btc funds recipient

btcAmount BigDecim
al

 mandatory Table:
OUTPUTS
Field:
BTC_VALUE
Type:
numeric

1 Btc amount to send

priorityFee BigDecim
al

 optional Table:
TEMP_OUT
B_TRXS

0.1 Bitcoins amount can
be paid to increase
priority and to

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

154 | P a g e

Field:
PRIORITY_F
EE Type:
numeric

accelerate
transaction. This is
extra fee for Miner
and IntDS

externalPartMnm
Seed

String min 5
chars,
max
500
chars

mandatory N/A sdhsakdhsakjhd User’s part of
mnemonic seed for
this wallet

Response Parameters in JSONObject:

Parameter Java Type STrxMSS DB mapping Example Description
externalTrxId String Table: TEMP_OUTB_TRXS

Field: EXTERNAL_TRX_ID
067e6162-3b6f-
4ae2-a171-
2470b63dff00

Transaction identifier from
the External system

tempTrxId String Table: TEMP_OUTB_TRXS
Field: TEMP_TRX_ID

111e6162-3b6f-
4ae2-a171-
2470b63dff00

Temporary transaction
identifier in the STrxMSS DB.

isMinerFeeEnough int N/A 1 True (1) if “Priority fee” given
by external system >= “Miner
fee” which should be paid for
the transaction otherwise
false (0)

minerFee BigDecimal Table: TEMP_OUTB_TRXS
Field: MINER_FEE

0.0001 Bitcoins amount should be
paid as Miner fee. “0.0” if
there is not Miner fee.

intDSFee BigDecimal Table: TEMP_OUTB_TRXS
Field: INTDS_FEE

0.00007 Bitcoins amount should be
paid as IntDS fee. “0.0” if
there is not Miner fee.

daemonTrxStatus String Table: TRX_STATUSES
Field: STATUS

“In Progress” Transaction Status

Error Response

errCodeId int Table: ERROR_CODES
Field: ERR_CODE_ID

6 System Error Identifier in the
STrxMSS DB.

Error String Table: ERROR_CODES
Field: ERROR_CODE

“Transaction
creation error”

System Error Code

Examples:

Function Call Java Request Example for POST Response Example

https://[Load
Balancer Host
Name]/STrxMssS
ervice/createSingl
eSigTrx

JSONObject entity = new JSONObject();
entity.put(“externalTrxId”,“067e6162-3b6f-4ae2-a171-
2470b63dff00”);
entity.put(“fromDaemonWalletId”, “067e6162-3b6f-4ae2-
a171-2470b63dff00”);
JSONArray entityArray = new JSONArray();

{“externalTrxId”: “067e6162-
3b6f-4ae2-a171-
2470b63dff00”,
“tempTrxId”: “111e6162-
3b6f-4ae2-a171-
2470b63dff00”,

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

155 | P a g e

JSONObject elem = new JSONObject();
elem.put(“toBtcAddress”,
“16UwLL9Risc3QfPqBUvKofHmBQ7wMtjvM”);
elem.put(“btcAmount”, “1.1”);
entityArray.add(elem);
…
entity.put(“toRecepients”, entityArray);
[entity.put(“priorityFee”, “0.1”);]
entity.put(“externalPartMnmSeed”, “sdhsakdhsakjhd”);

“minerFee”: “0.0001”,
“intDSFee”: “0.00007”,
“daemonTrxStatus”: “In
Progress”}

Error example:
{ “errCodeId”: 6, “error”:
“Transaction creation error”
}

sendSingleSigTrx
Function is sending prepared transaction to the blockchain and moving trx data from temporary table to the

permanent transactions table in the DB with “Pending” status.

Request
Parameters

Response
Parameters

Response
Type

Java Class (including
package)

Java Method

<externalTrxId>,
<tempTrxId>

<externalTrxId>,
<daemonTrxId>,
<daemonTrxStatus>

JSONObject

Error Response:
<errCodeId>, <error>

Request Parameters:

Parameter Java
Type

Length Required STrxMSS
DB
mapping

Example Description

externalTrxId String min 4
chars,
max 60
chars

mandatory N/A 067e6162-3b6f-
4ae2-a171-
2470b63dff00

Transaction
identifier from the
External system

tempTrxId String min 4
chars,
max 60
chars

mandatory Table:
TEMP_OUT
B_TRXS
Field:
TEMP_TRX
_ID
Type: UUID

111e6162-3b6f-
4ae2-a171-
2470b63dff00

Temporary
transaction identifier
in the STrxMSS DB.

Response Parameters in JSONObject:

Parameter Java Type STrxMSS DB mapping Example Description
externalTrxId String N/A 067e6162-3b6f-

4ae2-a171-
2470b63dff00

Transaction identifier from
the External system

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

156 | P a g e

daemonTrxId String Table: TRANSACTIONS
Field: TRX_ID

222e6162-3b6f-
4ae2-a171-
2470b63dff00

Transaction identifier in the
STrxMSS DB

daemonTrxStatus String Table: TRX_STATUSES
Field: STATUS

“Pending” Transaction Status

Error Response

errCodeId int Table: ERROR_CODES
Field: ERR_CODE_ID

7 System Error Identifier in the
STrxMSS DB.

Error String Table: ERROR_CODES
Field: ERROR_CODE

“Transaction send
error”

System Error Code

Examples:

Function Call Java Request Example for POST Response Example

https://[Load
Balancer Host
Name]/StrxMssServi
ce/sendSingleSigTrx

JSONObject entity = new JSONObject();
entity.put(“externalTrxId”, “067e6162-
3b6f-4ae2-a171-2470b63dff00”);
entity.put(“tempTrxId”, “111e6162-
3b6f-4ae2-a171-2470b63dff00”);

{“externalTrxId”: “067e6162-3b6f-4ae2-a171-
2470b63dff00”,
“daemonTrxId”: “222e6162-3b6f-4ae2-a171-
2470b63dff00”,
“daemonTrxStatus”: “Pending”}

Error example:
{ “errCodeId”: 7, “error”: “Transaction send
error” }

deleteTempTrx
Function deletes temporary transaction data from DB tables. Function returns error’s data in case system error.

Request
Parameters

Response
Parameters

Response
Type

Java Class (including
package)

Java Method

<externalTrxId>,
<tempTrxId>

<externalTrxId>,
<isTempTrxDeleted>

JSONObject

Error Response:
<errCodeId>, <error>

Request Parameters:

Parameter Java
Type

Length Required STrxMSS
DB
mapping

Example Description

externalTrxId String min 4
chars,
max 60
chars

mandatory N/A 067e6162-3b6f-
4ae2-a171-
2470b63dff00

Transaction
identifier from the
External system

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

157 | P a g e

tempTrxId String min 4
chars,
max 60
chars

mandatory Table:
TEMP_OUT
B_TRXS
Field:
TEMP_TRX
_ID
Type: UUID

111e6162-3b6f-
4ae2-a171-
2470b63dff00

Temporary
transaction identifier
in the STrxMSS DB.

Response Parameters in JSONObject:

Parameter Java Type STrxMSS DB mapping Example Description
externalTrxId String N/A 067e6162-3b6f-

4ae2-a171-
2470b63dff00

Transaction identifier from
the External system

isTempTrxDeleted int N/A 1 True (1) if temporary
transaction data was deleted
otherwise false (0).

Error Response

errCodeId int Table: ERROR_CODES
Field: ERR_CODE_ID

8 System Error Identifier in the
STrxMSS DB.

Error String Table: ERROR_CODES
Field: ERROR_CODE

“Error of Temp
Transaction
deleting”

System Error Code

Examples:

Function Call Java Request Example for POST Response Example

https://[Load Balancer Host
Name]/StrxMssService/delete
TempTrx

JSONObject entity = new JSONObject();
entity.put(“externalTrxId”, “067e6162-
3b6f-4ae2-a171-2470b63dff00”);
entity.put(“tempTrxId”, “111e6162-
3b6f-4ae2-a171-2470b63dff00”);

{“externalTrxId”: “067e6162-3b6f-
4ae2-a171-2470b63dff00”,
“isTempTrxDeleted”: 1}

Error example:
{ “errCodeId”: 8, “error”: “Error of
Temp Transaction deleting” }

createTransferFundsTrx
Function transfers Btc funds from one user Wallet to another. Fansction creates Temporary Single-sig transaction.

Function returns error’s data in case system error.

Request Parameters Response Parameters Response
Type

Java Class
(including
package)

Java Method

<externalTrxId>
<fromDaemonWalletId>,
<mnmSeedUserPartFrom>,
<toDaemonWalletId>,

<externalTrxId>,
<tempTrxId>,
[minerFee],
[intDSFee],

JSONObject

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

158 | P a g e

<mnmSeedUserPartTo>,
<btcAmount>

<daemonTrxStatus>

Error Response:
<errCodeId>, <error>

Request Parameters:

Parameter Java
Type

Length Required STrxMSS DB
mapping

Example Description

externalTrxId String min 4
chars, max
60 chars

mandatory N/A 067e6162-3b6f-
4ae2-a171-
2470b63dff00

Transaction
identifier from the
External system

fromDaemonWall
etId

String min 4
chars, max
60 chars

mandatory Table:
WALLETS
Field:
WALLET_ID
Type: UUID

567e6162-3b6f-
4ae2-a171-
2470b63dff00

Wallet identifier in
the STrxMSS DB.
Btc funds are
transferred from
this Wallet

mnmSeedUserPar
tFrom

String N/A mandatory N/A sdfdsfdsfs User’s part of
mnemonic seed for
wallet from which
Btc are transferred

toDaemonWalletI
d

String min 4
chars, max
60 chars

mandatory Table:
WALLETS
Field:
WALLET_ID
Type: UUID

123e6162-3b6f-
4ae2-a171-
2470b63dff00

Wallet identifier in
the STrxMSS DB.
Btc funds are
transferred to this
Wallet.

mnmSeedUserPar
tTo

String N/A mandatory N/A sdfdsffd User’s part of
mnemonic seed for
wallet to which Btc
are transferred

btcAmount BigDec
imal

 mandatory Table:
TEMP_OUTB_
TRXS
Field:
BTC_AMOUNT
Type: numeric

1 Btc amount to
transfer

Response Parameters in JSONObject:

Parameter Java Type STrxMSS DB mapping Example Description
externalTrxId String Table: TEMP_OUTB_TRXS

Field: EXTERNAL_TRX_ID
067e6162-3b6f-
4ae2-a171-
2470b63dff00

Transaction identifier from
the External system

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

159 | P a g e

tempTrxId String Table: TEMP_OUTB_TRXS
Field: TEMP_TRX_ID

111e6162-3b6f-
4ae2-a171-
2470b63dff00

Temporary transaction
identifier in the STrxMSS DB.

minerFee BigDecimal Table: TEMP_OUTB_TRXS
Field: MINER_FEE

0.0001 Bitcoins amount should be
paid as Miner fee. “0.0” if
there is not Miner fee.

intDSFee BigDecimal Table: TEMP_OUTB_TRXS
Field: INTDS_FEE

0.00007 Bitcoins amount should be
paid as IntDS fee. “0.0” if
there is not Miner fee.

daemonTrxStatus String Table: TRX_STATUSES
Field: STATUS

“In Progress” Transaction Status

Error Response

errCodeId int Table: ERROR_CODES
Field: ERR_CODE_ID

6 System Error Identifier in the
STrxMSS DB.

Error String Table: ERROR_CODES
Field: ERROR_CODE

“Transaction
creation error”

System Error Code

Examples:

Function Call Java Request Example for POST Response Example

https://[Load
Balancer Host
Name]/StrxMssSer
vice/createTransfer
FundsTrx

JSONObject entity = new JSONObject();
entity.put (“externalTrxId”, “067e6162-3b6f-
4ae2-a171-2470b63dff00”);
entity.put (“fromDaemonWalletId”,
“567e6162-3b6f-4ae2-a171-2470b63dff00”);
entity.put (“mnmSeedUserPartFrom”,
“sdfdsfdsfs”);
entity.put (“toDaemonWalletId”, “123e6162-
3b6f-4ae2-a171-2470b63dff00”);
entity.put (“mnmSeedUserPartTo”,
“sdfdsffd”);
entity.put (“btcAmount”, “10.3”);

{“externalTrxId”: “067e6162-3b6f-4ae2-
a171-2470b63dff00”,
“tempTrxId”: “111e6162-3b6f-4ae2-a171-
2470b63dff00”,
“minerFee”: “0.0001”,
“intDSFee”: “0.00007”,
“daemonTrxStatus”: “In Progress”}

Error example:
{ “errCodeId”: 9, “error”: “Error of
Transferring Funds” }

getTrxErrors
Function returns errors data of given transaction or error’s data in case system error.

Request
Parameters

Response
Parameters

Response
Type

Java Class (including
package)

Java Method

<daemonTrxId> <daemonTrxId>,
<trxErrors>(
 {<errCodeId>,
 <errDateCreated>,
 <errCode>,
 <errDescr>}
)

JSONObject,

JSONArray(

JSONObject,

JSONObject

…

)

Error Response:

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

160 | P a g e

<errCodeId>, <error>

Request Parameters:

Parameter Java
Type

Length Required STrxMSS DB
mapping

Example Description

daemonTrxId String min 4
chars, max
60 chars

mandatory Table:
TRANSACTIONS
Field: TRX_ID
Type: UUID

067e6162-3b6f-
4ae2-a171-
2470b63dff00

Transaction
identifier in the
STrxMSS DB

Response Parameters in JSONObject:

Parameter Java Type STrxMSS DB mapping Example Description
daemonTrxId String Table: TRANSACTIONS

Field: TRX_ID
067e6162-3b6f-
4ae2-a171-
2470b63dff00

Transaction identifier in
the STrxMSS DB

trxErrors JASONArray N/A Array of transaction
errors. Each array
member is JSONObject.
Empty array if there are
not errors associated with
this transaction.

errCodeId int Table:
TRANSACTIONS_ERROR_CODES
Field: ERR_CODE_ID

7 Error code identity
number.

errDateCreated String Table:
TRANSACTIONS_ERROR_CODES
Field: DATE_CREATED

“02-11-2016
19:21”

Date and time of error
creation in the format:
[dd-mm-yyyy hh:mm]

errCode String Table:
INTDSYSTEM_ERROR_CODES
Field: ERROR_CODE

“Transaction
send error”

Error code.

errDescr String Table:
INTDSYSTEM_ERROR_CODES
Field: ERROR_DESCR

“STrxMSS error
in the sending of
transaction to
blockchain”

Error description.

Error Response

errCodeId int Table: ERROR_CODES
Field: ERR_CODE_ID

10 System Error Identifier in
the STrxMSS DB.

Error String Table: ERROR_CODES
Field: ERROR_CODE

“STrxMSS error” System Error Code

Examples:

Function Call Java Request Example for POST Response Example

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

161 | P a g e

https://[Load
Balancer Host
Name]/StrxMssServic
e/getTrxErrors

String input =
“{\”daemonTrxId\”:\”067e6162-3b6f-
4ae2-a171-2470b63dff00\”}”;

{“daemonTrxId”: “067e6162-3b6f-4ae2-a171-
2470b63dff00”,
“trxErrors”: (
 {“errCodeId”: 7,
 “errDateCreated”: ”02-11-2016 19:21”,
 “errCode”: “Transaction send error”,
 “errDescr”: “STrxMSS error in the sending of
transaction to blockchain”
 },
 {…} …
)
}

Error example:
{ “errCodeId”: 10, “error”: “STrxMSS error” }

getOutbTrxData
Function returns some data of given outbound transaction or error’s data in case system error.

Request
Parameters

Response
Parameters

Response
Type

Java Class (including
package)

Java Method

<daemonTrxId> <daemonTrxId>,
<daemonTrxStatus>,
<isConfirmed>,
<isRejected>,
[minerFee],
[systemFee]

JSONObject

Error Response:
<errCodeId>, <error>

Request Parameters:

Parameter Java
Type

Length Required STrxMSS
DB
mapping

Example Description

daemonTrxId String min 4
chars,
max 60
chars

mandatory Table:
TRANSACTI
ONS
Field:
TRX_ID
Type: UUID

067e6162-3b6f-
4ae2-a171-
2470b63dff00

Transaction
identifier in the
STrxMSS DB

Response Parameters in JSONObject:

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

162 | P a g e

Parameter Java Type STrxMSS DB mapping Example Description
daemonTrxId String Table: TRANSACTIONS

Field: TRX_ID
067e6162-3b6f-
4ae2-a171-
2470b63dff00

Transaction identifier in the
STrxMSS DB

daemonTrxStatus String Table: TRX_STATUSES
Field: STATUS

“Pending” Transaction Status

isConfirmed int N/A 1 True (1) if transaction is
confirmed otherwise false (0).
Trx is confirmed if there are 6
blocks after transaction block.

isRejected int N/A 0 True (0) if transaction is
rejected by blockchain
otherwise false (0).

minerFee BigDecimal Table: TRANSACTIONS
Field: MINER_FEE

0.0 Bitcoins amount should be
paid as Miner fee. Zero by
default.

systemFee BigDecimal Table: OUTPUTS
Field: BTC_VALUE

0.0 Bitcoins amount should be
paid as IntDS system fee. Zero
by default.

Error Response

errCodeId int Table: ERROR_CODES
Field: ERR_CODE_ID

11 System Error Identifier in the
STrxMSS DB.

Error String Table: ERROR_CODES
Field: ERROR_CODE

“Trx data was not
found”

System Error Code

Examples:

Function Call Java Request Example for POST Response Example

https://[Load Balancer
Host
Name]/StrxMssService/g
etOutbTrxData

String input =
“{\”daemonTrxId\”:\”067e6162-
3b6f-4ae2-a171-2470b63dff00\”}”;

{“ daemonTrxId”: “067e6162-3b6f-4ae2-a171-
2470b63dff00”,
“daemonTrxStatus”: “Pending”,
“isConfirmed”: 1,
“isRejected”: 0,
“minerFee”: ”0.0”,
“systemFee”: “0.0”}

Error example:
{ “errCodeId”: 11, “error”: “Trx data was not
found” }

5.1.3 Inbound Transaction Functions

findInbTrxForBtcAddress
Function searches all Inbound transactions associated with given Btc address. Function returns error’s data in case

system error.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

163 | P a g e

Request
Parameters

Response
Parameters

Response
Type

Java Class (including
package)

Java Method

<btcAddress>,
<daemonWalletId>

<btcAddress>,
<inbTrxs>(
 {<daemonTrxId>,
 <btcAmount>,
 <dateCreated>}
)

JSONObject,

JSONArray(

JSONObject,

JSONObject

…

)

Error Response:
<errCodeId>, <error>

Request Parameters:

Parameter Java
Type

Length Required STrxMSS DB
mapping

Example Description

btcAddress String min 4
chars,
max 50
chars

mandatory Table:
OUTPUTS
Field:
BTC_ADDRESS
Type: varchar

16UwLL9Risc3QfPqB
UvKofHmBQ7wMtjv
M

Btc address of
the Btc funds
recipient

daemonWall
etId

String min 4
chars,
max 60
chars

mandatory Table:
WALLETS
Field:
WALLET_ID
Type: UUID

067e6162-3b6f-4ae2-
a171-2470b63dff00

Wallet Identifier
from STrxMSS DB

Response Parameters in JSONObject:

Parameter Java
Type

STrxMSS DB mapping Example Description

btcAddress String Table: OUTPUTS
Field: BTC_ADDRESS

16UwLL9Risc3QfPqBUv
KofHmBQ7wMtjvM

Btc address of the Btc
funds recipient

inbTrxs JASONArr
ay

N/A Array of confirmed
Inbound transactions.
Each array member is
JSONObject. Empty array
if there are not
transactions associated
with this Btc address.

daemonTrxId String Table: TRANSACTIONS
Field: TRX_ID

067e6162-3b6f-4ae2-
a171-2470b63dff00

Transaction identifier in
the STrxMSS DB

btcAmount BigDecima Table: OUTPUTS
Field: BTC_VALUE

1.1 Btc amount paied to this
Btc address.

dateCreated String Table: TRANSACTIONS
Field: DATE_CREATED

“12-01-2016 11:10” Date and time when
transaction record is
created in the DB.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

164 | P a g e

Format: [dd-mm-yyyy
hh:mm]

Error Response

errCodeId int Table: ERROR_CODES
Field: ERR_CODE_ID

12 System Error Identifier in
the STrxMSS DB.

Error String Table: ERROR_CODES
Field: ERROR_CODE

“Inbound Trx was not
found for Btc address”

System Error Code

Examples:

Function Call Java Request Example for POST Response Example

https://[Load
Balancer Host
Name]/StrxMssSer
vice/findInbTrxForB
tcAddress

JSONObject entity = new JSONObject();
entity.put(“btcAddress”,
“16UwLL9Risc3QfPqBUvKofHmBQ7wMtjv
M”);
entity.put(“daemonWalletId”,
“067e6162-3b6f-4ae2-a171-
2470b63dff00”);

{“btcAddress”:

“16UwLL9Risc3QfPqBUvKofHmBQ7wMtjv
M”,
“inbTrxs”: (
 {“daemonTrxId”: “067e6162-3b6f-4ae2-
a171-2470b63dff00”,
 “btcAmount”: ”1.1”,
 “dateCreated”: “02-11-2016 19:21”
 },
 {…} …
)
}

Error example:
{ “errCodeId”: 12, “error”: “Inbound Trx was
not found for Btc address” }

getNewBtcAddress
Function returns new Btc address for given Wallet or error’s data in case system error.

Request Parameters Response
Parameters

Response
Type

Java Class
(including package)

Java Method

<daemonWalletId>,
<externalPartMnmSeed>
<isCompressedPubKey>

<daemonWalletId>,
<newBtcAddress>

JSONObject

Error Response:
<errCodeId>, <error>

Request Parameters:

Parameter Java
Type

Length Required STrxMSS DB
mapping

Example Description

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

165 | P a g e

daemonWalletId String min 4
chars,
max 60
chars

mandatory Table: WALLETS
Field:
WALLET_ID
Type: UUID

067e6162-3b6f-
4ae2-a171-
2470b63dff00

Wallet
identifier in
the STrxMSS
DB

externalPartMnmSeed String min 5
chars,
max 500
chars

mandatory N/A sdhsakdhsakjhd User’s part of
mnemonic
seed for this
wallet

isCompressedPubKey int 0 or 1
only

mandatory N/A 0 True (1) if
Compressed
Public Key is
used for Btc
Address
creation
otherwise
false (0). False
(0) by default

Response Parameters in JSONObject:

Parameter Java
Type

STrxMSS DB mapping Example Description

newBtcAddress String Table:
SYSTEM_BTC_ADDRESSES
Field: BTC_ADDRESS

16UwLL9Risc3QfPqBUv
KofHmBQ7wMtjvM

New Btc address is
generated for this wallet

daemonWalletId String Table: WALLETS
Field: WALLET_ID

067e6162-3b6f-4ae2-
a171-2470b63dff00

Wallet identifier in the
STrxMSS DB

Error Response

errCodeId int Table: ERROR_CODES
Field: ERR_CODE_ID

13 System Error Identifier in
the STrxMSS DB.

Error String Table: ERROR_CODES
Field: ERROR_CODE

“Error in the creation of
Btc address”

System Error Code

Examples:

Function Call Java Request Example for
POST

Response Example

https://[Load Balancer Host
Name]/StrxMssService/getNe
wBtcAddress

JSONObject entity = new
JSONObject();
entity.put(“daemonWalletId”,
“067e6162-3b6f-4ae2-a171-
2470b63dff00”);
entity.put(“externalPartMnmS
eed”, “16UwLL9”);

{
“daemonWalletId”:” 067e6162-3b6f-4ae2-
a171-2470b63dff00”,

“newBtcAddress”:”16UwLL9Risc3QfPqBUvK
ofHmBQ7wMtjvM”
}

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

166 | P a g e

 Error example:
{ “errCodeId”: 13, “error”: “Error in the
creation of Btc address” }

5.1.4 Warm Storage Functions

lockWallet
Function creates “Warm Storage” transaction for given Wallet and locks Wallet till specified date or returns error’s

data in case system error.

Note: “Warm Storage” solution will be developed in the future stages of project according to BIP-0065.

lockWallet function will be updated. Current implementation will update only IS_LOCKED flag in the

WALLETS table.

Request
Parameters

Response
Parameters

Response
Type

Java Class (including
package)

Java Method

<daemonWalletId>,
<dateToUnlock>

<daemonWalletId>,
<isLocked>

JSONObject

Error Response:
<errCodeId>, <error>

Request Parameters:

Parameter Java
Type

Length Required STrxMSS DB
mapping

Example Description

daemonWalletId String min 4
chars, max
60 chars

mandatory Table: WALLETS
Field: WALLET_ID
Type: UUID

067e6162-3b6f-
4ae2-a171-
2470b63dff00

Wallet identifier
in the STrxMSS
DB

dateToUnlock String min 16
chars, max
16 chars

mandatory Table: WALLETS
Field:
DATE_TO_UNLOCK
Type: TIMESTAMP

“12-01-2016
11:10”

Date and time
when Wallet
should be
unlocked.
Format: [dd-
mm-yyyy
hh:mm]

Response Parameters in JSONObject:

Parameter Java
Type

STrxMSS DB mapping Example Description

daemonWalletId String Table: WALLETS
Field: WALLET_ID

067e6162-3b6f-4ae2-
a171-2470b63dff00

Wallet identifier in the STrxMSS
DB

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

167 | P a g e

isLocked int Table: WALLETS
Field: IS_LOCKED

1 True (1) if Wallet is locked
otherwise false (0).

Error Response

errCodeId int Table: ERROR_CODES
Field: ERR_CODE_ID

14 System Error Identifier in the
STrxMSS DB.

Error String Table: ERROR_CODES
Field: ERROR_CODE

“Error of Locking
Wallet”

System Error Code

Examples:

Function Call Java Request Example for
POST

Response Example

https://[Load Balancer Host
Name]/StrxMssService/lockW
allet

JSONObject entity = new
JSONObject();
entity.put(“daemonWalletId”,
“067e6162-3b6f-4ae2-a171-
2470b63dff00”);
entity.put(“12-01-2016
11:10”);

{“ daemonWalletId”: “067e6162-3b6f-4ae2-
a171-2470b63dff00”, “isLocked”: 1}

Error example:
{ “errCodeId”: 14, “error”: “Error of Locking
Wallet” }

unlockWallet
Function unlocks given Wallet from “Warm Storage” or returns error’s data in case system error.

Note: This function is temporary. “Warm Storage” solution will be developed in the future stages of project

according to BIP-0065. This function will be deleted after that.

Request
Parameters

Response
Parameters

Response
Type

Java Class (including
package)

Java Method

<daemonWalletId> <daemonWalletId>,
<isLocked>

JSONObject

Error Response:
<errCodeId>, <error>

Request Parameters:

Parameter Java
Type

Length Required STrxMSS DB
mapping

Example Description

daemonWalletId String min 4
chars, max
60 chars

mandatory Table: WALLETS
Field: WALLET_ID
Type: UUID

067e6162-3b6f-
4ae2-a171-
2470b63dff00

Wallet identifier
in the STrxMSS
DB

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

168 | P a g e

Response Parameters in JSONObject:

Parameter Java
Type

STrxMSS DB mapping Example Description

daemonWalletId String Table: WALLETS
Field: WALLET_ID

067e6162-3b6f-4ae2-
a171-2470b63dff00

Wallet identifier in the STrxMSS
DB

isLocked int Table: WALLETS
Field: IS_LOCKED

0 True (1) if Wallet is locked
otherwise false (0).

Error Response

errCodeId int Table: ERROR_CODES
Field: ERR_CODE_ID

10 System Error Identifier in the
STrxMSS DB.

Error String Table: ERROR_CODES
Field: ERROR_CODE

“STrxMSS error” System Error Code

Examples:

Function Call Java Request Example for POST Response Example

https://[Load Balancer
Host
Name]/StrxMssService/lo
ckWallet

String input =
“{\”daemonWalletId\”:\”067e6162
-3b6f-4ae2-a171-
2470b63dff00\”}”;

{“ daemonWalletId”: “067e6162-3b6f-4ae2-
a171-2470b63dff00”, “isLocked”: 0}

Error example:
{ “errCodeId”: 10, “error”: “STrxMSS error” }

5.1.5 Other Functions

getErrorData
Function returns data of IntD System error by given error identifier or error’s data in case system error.

Request
Parameters

Response
Parameters

Response
Type

Java Class (including
package)

Java Method

<errCodeId> <errCodeId>,
<errCode>,
<errDescr>,
[subSystemAbbr]

JSONObject

Error Response:
<errCodeId>, <error>

Request Parameters:

Parameter Java
Type

Length Required “shared_data” DB mapping Example Description

errCodeId int mandatory Table:
INTDSYSTEM_ERROR_CODES
Field: ERR_CODE_ID
Type: int

1 Error code identity
number.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

169 | P a g e

Response Parameters in JSONObject:

Parameter Java Type “shared_data” DB mapping Example Description
errCodeId int Table:

INTDSYSTEM_ERROR_CODES
Field: ERR_CODE_ID

7 Error code identity
number.

errCode String Table:
INTDSYSTEM_ERROR_CODES
Field: ERROR_CODE

“Transaction
send error”

Error code.

errDescr String Table:
INTDSYSTEM_ERROR_CODES
Field: ERROR_DESCR

“STrxMSS error
in the sending of
transaction to
blockchain”

Error description.

subSystemAbbr String Table:
INTDSYSTEM_ERROR_CODES
Field: SUBSYSTEM_ABBR

“STrxMSS” SubSystem abbreviation.
Value can be empty or
null.

Error Response

errCodeId int Table: ERROR_CODES
Field: ERR_CODE_ID

15 System Error Identifier in
the STrxMSS DB.

Error String Table: ERROR_CODES
Field: ERROR_CODE

“Data of system
error was not
found”

System Error Code

Examples:

Function Call Java Request Example for POST Response Example

https://[Load Balancer
Host
Name]/StrxMssService/g
etErrorData

String input = “{\”errCodeId\”:1}”; {“errCodeId”: 7, “errCode”: “Transaction send
error”, “errDescr”: “STrxMSS error in the
sending of transaction to blockchain”,
“subSystemAbbr”: “STrxMSS”
}

Error example:
{ “errCodeId”: 15, “error”: “Data of system
error was not found” }

getRejectionMsgData
Function returns data of blockchain rejection message by given message identifier or error’s data in case system

error.

Request
Parameters

Response
Parameters

Response
Type

Java Class (including
package)

Java Method

<rejectMsgId> <rejectMsgId>,
<rejectMsgCode>,
<rejectMsgDescr>,

JSONObject

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

170 | P a g e

<rejectCategory>

Error Response:
<errCodeId>, <error>

Request Parameters:

Parameter Java
Type

Length Required “shared_data” DB
mapping

Example Description

rejectMsgId int mandatory Table: BTC_REJECTION_MSG
Field: REJECT_MSG_ID
Type: int

1 Rejection message
identity number.

Response Parameters in JSONObject:

Parameter Java Type “shared_data” DB mapping Example Description
rejectMsgId int Table: BTC_REJECTION_MSG

Field: REJECT_MSG_ID
1 Rejection message

identity number.

rejectMsgCode int Table: BTC_REJECTION_MSG
Field: REJECT_MSG_CODE

10 Rejection message code.

rejectMsgDescr String Table: BTC_REJECTION_MSG
Field: REJECT_MSG_DESCR

“Block is invalid
for some reason
(invalid proof-of-
work, invalid
signature, etc)”

Rejection message
description.

rejectCategory String Table: BTC_REJECTION_MSG
Field: REJECTION_CATEGORY

“Block” Rejection message
category

Error Response

errCodeId int Table: ERROR_CODES
Field: ERR_CODE_ID

16 System Error Identifier in
the STrxMSS DB.

Error String Table: ERROR_CODES
Field: ERROR_CODE

“Rejection
message was not
found”

System Error Code

Examples:

Function Call Java Request Example for POST Response Example

https://[Load Balancer
Host
Name]/StrxMssService/g
etErrorData

String input =
“{\”rejectMsgId\”:1}”;

{“rejectMsgId”: 1, “rejectMsgCode”: 10,
“rejectMsgDescr”: “Block is invalid for some
reason (invalid proof-of-work, invalid
signature, etc)”, “rejectCategory”: “Block”
}

Error example:
{ “errCodeId”: 16, “error”: “Rejection message
was not found” }

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

171 | P a g e

5.2 Accounting Transaction Management SubSystem Interface
This point can be done in the scope of future development. Will need some researching activity.

5.3 Bank Transaction Management SubSystem Interface
This point can be done in the scope of future development. Will need some researching activity.

5.4 Exchange Transaction Management SubSystem Interface
This point can be done in the scope of future development. Will need some researching activity.

5.5 Message Transaction Management SubSystem Interface
This point can be done in the scope of future development. Will need some researching activity.

5.6 Contracts Management SubSystem Interface
This point can be done in the scope of future development. Will need some researching activity.

5.7 Daemon Core System Interface
iDaemon system will use various functions as RPC from the FOS Core Daemon component. The Daemon

RPCs [2.16] will be called via a Java Wrapper which is RESFul Java Web Service.

Input parameters, return values and description of these RPCs and Java Wrapper are described below.

Note: This section will be updated as development progresses through later phases. Currently, only RPCs

related to single signature transactions and P2PKH addresses are documented.

The wallet related RPCs are not documented here as the open source wallet functionality will not be used.

DeMorgan will develop custom wallet software that will use iDaemon for network access and other basic

functionality.

5.7.1 Description of commonly used data structures, definitions in bitcoin core RPCs
Outpoint: The data structure used to refer to a particular transaction output, consisting of a 32-byte TXID

and a 4-byte output index number (vout).

https://bitcoin.org/en/glossary/output
https://bitcoin.org/en/glossary/txid
https://bitcoin.org/en/developer-guide#term-output-index

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

172 | P a g e

Output, Transaction Output, TxOut: An output in a transaction which contains two fields: a value field for

transferring zero or more Satoshis and a scriptPubKey for indicating what conditions must be fulfilled for

those Satoshis to be further spent.

Serialized transaction: Complete transactions in their binary format; often represented using hexadecimal.

Sometimes called raw format because of the various Bitcoin Core commands with “raw” in their names.

Serialized block: A complete block in its binary format—the same format used to calculate total block byte

size; often represented using hexadecimal.

RPC Byte order: A hash digest displayed with the byte order reversed; used in Bitcoin Core RPCs, many

block explorers, and other software.

https://bitcoin.org/en/glossary/output
https://bitcoin.org/en/glossary/denominations
https://bitcoin.org/en/glossary/denominations
https://bitcoin.org/en/glossary/serialized-transaction
https://bitcoin.org/en/glossary/serialized-transaction
https://bitcoin.org/en/developer-reference#remote-procedure-calls-rpcs
https://bitcoin.org/en/glossary/block

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

173 | P a g e

5.7.2 Remote Procedure Calls

Transactions
Use these RPCs to create, sign, send and get information about raw transactions.

Note: Although FOS daemon RPCs will be used to sign a transaction, RPCs related to key generation will not

be used. DeMorgan will develop custom implementation for key generation.

Createrawtransaction

creates an unsigned serialized transaction (complete transaction in their binary format) that spends a

previous output to a new output with a P2PKH or P2SH address. The transaction is not transmitted to the

network. The transaction’s inputs are not signed.

Parameters:

Param
No.

Name Type Presence Description

1 Outpoints Array

Required
(exactly 1)

An array of outpoints. Each
outpoint is an unspent
output with 2 arrays as
described below.

• Outpoint Object Required (1 or
more)

An object describing a
particular unspent outpoint.
Each outpoint is an object
with 2 arrays as described
below.

- TXID String (hex) Required
(exactly 1)

The TXID of the outpoint
encoded as hex in RPC byte
order. 32 bytes

- vout Number (int) Required
(exactly 1)

The output index number
(vout) of the outpoint; the
first output in a transaction
is index 0. 4 bytes

2 Outputs Object Required
(exactly 1)

The addresses and amounts
to pay

 • Address/Amount String :
number (float)

Required (1 or
more)

A key/value pair with the
address to pay as a string
(key) and the amount to pay
that address (value) in
bitcoins

https://bitcoin.org/en/glossary/serialized-transaction
https://bitcoin.org/en/glossary/output
https://bitcoin.org/en/glossary/output
https://bitcoin.org/en/glossary/p2sh-address
https://bitcoin.org/en/developer-guide#term-network
https://bitcoin.org/en/glossary/outpoint
https://bitcoin.org/en/glossary/txid
https://bitcoin.org/en/glossary/outpoint
https://bitcoin.org/en/glossary/rpc-byte-order
https://bitcoin.org/en/glossary/rpc-byte-order
https://bitcoin.org/en/developer-guide#term-output-index
https://bitcoin.org/en/glossary/outpoint
https://bitcoin.org/en/glossary/output
https://bitcoin.org/en/glossary/address
https://bitcoin.org/en/glossary/address
https://bitcoin.org/en/developer-reference#term-proper-money-handling
https://bitcoin.org/en/glossary/address
https://bitcoin.org/en/glossary/address
https://bitcoin.org/en/glossary/denominations

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

174 | P a g e

Return:

Usage and Examples:

createrawtransaction [{“txid”:”id”,”vout”:n},...] {“address”:amount,...}

Arguments:
1. “transactions” (string, required) A json array of json objects
 [
 {
 “txid”:”id”, (string, required) The transaction id
 “vout”:n (numeric, required) The output number
 }
 ,...
]
2. “addresses” (string, required) a json object with addresses as keys
 and amounts as values
 {
 “address”: x.xxx (numeric, required) The key is the bitcoin address, the
 value is the btc amount
 ,...
 }

Result:
“transaction” (string) hex string of the transaction

Examples:

> bitcoin-cli createrawtransaction “[{\”txid\”:\”myid\”,\”vout\”:0}]” “{\”addres
s\”:0.01}”

Result
No.

Name Type Presence Description

1 result string

Required
(exactly 1)

The resulting unsigned raw
transaction in serialized
transaction format encoded
as hex. If the transaction
couldn’t be generated, this
will be set to JSON null and
the JSON-RPC error field may
contain an error message

https://bitcoin.org/en/glossary/serialized-transaction
https://bitcoin.org/en/glossary/serialized-transaction
https://bitcoin.org/en/glossary/serialized-transaction
https://bitcoin.org/en/glossary/serialized-transaction
https://bitcoin.org/en/developer-reference#remote-procedure-calls-rpcs

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

175 | P a g e

> curl –user myusername –data-binary ‘{“jsonrpc”: “1.0”, “id”:”curltest”, “met
hod”: “createrawtransaction”, “params”: [“[{\”txid\”:\”myid\”,\”vout\”:0}]”, “{\
“address\”:0.01}”] }’ –H ‘content-type: text/plain;’ http://127.0.0.1:8332/

Example from Bitcoin Core 0.10.0 testnet:

bitcoin-cli –testnet createrawtransaction ‘’’

 [

 {

 “txid”: “1eb590cd06127f78bf38ab4140c4cdce56ad9eb8886999eb898ddf4d3b28a91d”,

 “vout” : 0

 }

]’’’ ‘{ “mgnucj8nYqdrPFh2JfZSB1NmUThUGnmsqe”: 0.13 }’

Result (wrapped):

01000000011da9283b4ddf8d89eb996988b89ead56cecdc44041ab38bf787f12\

06cd90b51e0000000000ffffffff01405dc600000000001976a9140dfc8bafc8\

419853b34d5e072ad37d1a5159f58488ac00000000

http://127.0.0.1:8332/
https://github.com/bitcoin/bitcoin/tree/0.10

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

176 | P a g e

decoderawtransaction

decodes a serialized transaction hex string into a JSON object describing the transaction.

Parameters:

Return:

Param
No.

Name Type Presence Description

1 serialized
transaction

String (hex) Required
(exactly 1)

The transaction to decode in
serialized transaction format.

Result
No.

Name Type Presence Description

1 result object

Required
(exactly 1)

An object describing the
decoded transaction, or
JSON null if the transaction
could not be decoded.

• TXID String
(hex)

Required
(exactly 1)

The transaction’s TXID
encoded as hex in RPC byte
order

• version Number
(int)

Required
(exactly 1)

The transaction format
version number

• locktime Number
(int)

Required
(exactly 1)

The transaction’s locktime:
either a Unix epoch date or
block height; see the
Locktime parsing rules

• vin array Required
(exactly 1)

An array of objects with each
object being an input vector
(vin) for this transaction
(described below). Input
objects will have the same
order within the array as
they have in the transaction,
so the first input listed will
be input 0

- input object Required (1 or
more)

An object describing one of
this transaction’s inputs.
May be a regular input or a
coinbase. Object should
contain following members:

https://bitcoin.org/en/glossary/serialized-transaction
https://bitcoin.org/en/glossary/serialized-transaction
https://bitcoin.org/en/glossary/serialized-transaction
https://bitcoin.org/en/glossary/serialized-transaction
https://bitcoin.org/en/glossary/txid
https://bitcoin.org/en/glossary/rpc-byte-order
https://bitcoin.org/en/glossary/rpc-byte-order
https://bitcoin.org/en/glossary/locktime
https://bitcoin.org/en/glossary/block-height
https://bitcoin.org/en/developer-guide#locktime_parsing_rules
https://bitcoin.org/en/glossary/input
https://bitcoin.org/en/glossary/input
https://bitcoin.org/en/glossary/input
https://bitcoin.org/en/glossary/input
https://bitcoin.org/en/glossary/input
https://bitcoin.org/en/glossary/input
https://bitcoin.org/en/glossary/coinbase

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

177 | P a g e

 o txid String
(hex)

Optional (0 or 1) The transaction id

 o vout Number
(int)

Optional (0 or 1) The output number of the
outpoint being spent. The
first output in a transaction
has an index of 0. Not
present if this is a coinbase
transaction

 o scriptSig Json
Object

Optional (0 or 1) An object describing the
signature script of this input.
Not present if this is a
coinbase transaction

 ▪ asm String
(asm)

Required
(exactly 1)

The signature script in
decoded form with non-
data-pushing op codes listed

 ▪ hex String
(hex)

Required
(exactly 1)

The signature script encoded
as hex

 o coinbase String
(hex)

Optional (0 or 1) The coinbase (similar to the
hex field of a scriptSig)
encoded as hex. Only
present if this is a coinbase
transaction

 o sequence Number
(int)

Required
(exactly 1)

The input sequence number

 • vout Array of
json
objects

Required
(exactly 1)

An array of objects each
describing an output vector
(vout) for this transaction.
Output objects will have the
same order within the array
as they have in the
transaction, so the first
output listed will be output 0

 - Output Json
Object

Required (1 or
more)

An object describing one of
this transaction’s outputs

 o value Number
(float)

Required
(exactly 1)

The number of bitcoins paid
to this output. May be 0.

 o n Number
(int)

Required
(exactly 1)

The output index number of
this output

 o scriptPubKey Json object Required
(exactly 1)

An object describing the
pubkey script

 ▪ asm String
(asm)

Required
(exactly 1)

The pubkey script in decoded
form with non-data-pushing
op codes listed

https://bitcoin.org/en/glossary/output
https://bitcoin.org/en/glossary/coinbase-transaction
https://bitcoin.org/en/glossary/coinbase-transaction
https://bitcoin.org/en/glossary/coinbase
https://bitcoin.org/en/glossary/signature-script
https://bitcoin.org/en/glossary/coinbase-transaction
https://bitcoin.org/en/glossary/coinbase-transaction
https://bitcoin.org/en/glossary/output
https://bitcoin.org/en/glossary/output
https://bitcoin.org/en/glossary/output
https://bitcoin.org/en/glossary/output
https://bitcoin.org/en/glossary/output
https://bitcoin.org/en/glossary/pubkey-script

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

178 | P a g e

Usage and Examples:

Arguments:
1. “hex” (string, required) The transaction hex string

Result:
{
 “txid” : “id”, (string) The transaction id
 “version” : n, (numeric) The version
 “locktime” : ttt, (numeric) The lock time
 “vin” : [(array of json objects)

 ▪ hex String
(hex)

Required
(exactly 1)

The pubkey script in decoded
form with non-data-pushing
op codes listed

 ▪ reqSigs Number
(int)

Optional (0 or 1) This field is 1 for now, for
single signature
transactions.It may be
greater than 1 for bare
multisig. This value will not
be returned for nulldata or
nonstandard script types
(see the type key below)

 ▪ type string Optional (0 or 1) The type of script. This will
be pubkeyhash for now.
• pubkey for a P2PK script
• pubkeyhash for a P2PKH
script
• scripthash for a P2SH script
• multisig for a bare multisig
script
• nulldata for nulldata scripts
• nonstandard for unknown
scripts

 ▪ addresses Json array
of strings

Optional (0 or 1) The P2PKH or P2SH
addresses used in this
transaction, or the computed
P2PKH address of any
pubkeys in this transaction.
This array will not be
returned for nulldata or
nonstandard script types

 - address string Required (1 or
more)

A P2PKH or P2SH address

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

179 | P a g e

 {
 “txid”: “id”, (string) The transaction id
 “vout”: n, (numeric) The output number
 “scriptSig”: { (json object) The script
 “asm”: “asm”, (string) asm
 “hex”: “hex” (string) hex
 },
 “sequence”: n (numeric) The script sequence number
 }
 ,...
],
 “vout” : [(array of json objects)
 {
 “value” : x.xxx, (numeric) The value in btc
 “n” : n, (numeric) index
 “scriptPubKey” : { (json object)
 “asm” : “asm”, (string) the asm
 “hex” : “hex”, (string) the hex
 “reqSigs” : n, (numeric) The required sigs
 “type” : “pubkeyhash”, (string) The type, eg ‘pubkeyhash’
 “addresses” : [(json array of string)
 “12tvKAXCxZjSmdNbao16dKXC8tRWfcF5oc” (string) bitcoin address
 ,...
]
 }
 }
 ,...
],
}

Examples:

> bitcoin-cli decoderawtransaction “hexstring”
> curl –user myusername –data-binary ‘{“jsonrpc”: “1.0”, “id”:”curltest”, “met
hod”: “decoderawtransaction”, “params”: [“hexstring”] }’ –H ‘content-type: text/
plain;’ http://127.0.0.1:8332/

Example from Bitcoin Core 0.10.0 testnet:

Decode a signed one-input, three-output transaction:

bitcoin-cli –testnet decoderawtransaction 0100000001268a9ad7bfb2\

1d3c086f0ff28f73a064964aa069ebb69a9e437da85c7e55c7d7000000006b48\

http://127.0.0.1:8332/
https://github.com/bitcoin/bitcoin/tree/0.10
https://bitcoin.org/en/glossary/input
https://bitcoin.org/en/glossary/output

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

180 | P a g e

3045022100ee69171016b7dd218491faf6e13f53d40d64f4b40123a2de52560f\

eb95de63b902206f23a0919471eaa1e45a0982ed288d374397d30dff541b2dd4\

5a4c3d0041acc0012103a7c1fd1fdec50e1cf3f0cc8cb4378cd8e9a2cee8ca9b\

3118f3db16cbbcf8f326ffffffff0350ac6002000000001976a91456847befbd\

2360df0e35b4e3b77bae48585ae06888ac80969800000000001976a9142b1495\

0b8d31620c6cc923c5408a701b1ec0a02088ac002d3101000000001976a9140d\

fc8bafc8419853b34d5e072ad37d1a5159f58488ac00000000

Result:

{

 “txid” : “ef7c0cbf6ba5af68d2ea239bba709b26ff7b0b669839a63bb01c2cb8e8de481e”,

 “version” : 1,

 “locktime” : 0,

 “vin” : [

 {

 “txid” : “d7c7557e5ca87d439e9ab6eb69a04a9664a0738ff20f6f083c1db2bfd79a8a26”,

 “vout” : 0,

 “scriptSig” : {

 “asm” :
“3045022100ee69171016b7dd218491faf6e13f53d40d64f4b40123a2de52560feb95de63b902206f23a0919471eaa1e45a0982ed
288d374397d30dff541b2dd45a4c3d0041acc001
03a7c1fd1fdec50e1cf3f0cc8cb4378cd8e9a2cee8ca9b3118f3db16cbbcf8f326”,

 “hex” :
“483045022100ee69171016b7dd218491faf6e13f53d40d64f4b40123a2de52560feb95de63b902206f23a0919471eaa1e45a0982
ed288d374397d30dff541b2dd45a4c3d0041acc0012103a7c1fd1fdec50e1cf3f0cc8cb4378cd8e9a2cee8ca9b3118f3db16cbbcf
8f326”

 },

 “sequence” : 4294967295

 }

],

 “vout” : [

 {

 “value” : 0.39890000,

 “n” : 0,

 “scriptPubKey” : {

 “asm” : “OP_DUP OP_HASH160 56847befbd2360df0e35b4e3b77bae48585ae068 OP_EQUALVERIFY
OP_CHECKSIG”,

 “hex” : “76a91456847befbd2360df0e35b4e3b77bae48585ae06888ac”,

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

181 | P a g e

 “reqSigs” : 1,

 “type” : “pubkeyhash”,

 “addresses” : [

 “moQR7i8XM4rSGoNwEsw3h4YeuduuP6mxw7”

]

 }

 },

 {

 “value” : 0.10000000,

 “n” : 1,

 “scriptPubKey” : {

 “asm” : “OP_DUP OP_HASH160 2b14950b8d31620c6cc923c5408a701b1ec0a020 OP_EQUALVERIFY
OP_CHECKSIG”,

 “hex” : “76a9142b14950b8d31620c6cc923c5408a701b1ec0a02088ac”,

 “reqSigs” : 1,

 “type” : “pubkeyhash”,

 “addresses” : [

 “mjSk1Ny9spzU2fouzYgLqGUD8U41iR35QN”

]

 }

 },

 {

 “value” : 0.20000000,

 “n” : 2,

 “scriptPubKey” : {

 “asm” : “OP_DUP OP_HASH160 0dfc8bafc8419853b34d5e072ad37d1a5159f584 OP_EQUALVERIFY
OP_CHECKSIG”,

 “hex” : “76a9140dfc8bafc8419853b34d5e072ad37d1a5159f58488ac”,

 “reqSigs” : 1,

 “type” : “pubkeyhash”,

 “addresses” : [

 “mgnucj8nYqdrPFh2JfZSB1NmUThUGnmsqe”

]

 }

 }

]

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

182 | P a g e

}

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

183 | P a g e

signrawtransaction

signs a transaction in the serialized transaction format using private keys stored in the wallet or provided in

the call.

Parameters:

Param
No.

Name Type Presence Description

1 Transaction String (hex)

Required
(exactly 1)

The transaction to sign

2 Unspent outputs Json Array of
json objects

Optional (0 or 1) Json array of previous
dependent transaction
outputs.

 • Output Json Object Optional (0 or 1) An output being spent

 o txid String (hex) Required
(exactly 1)

The TXID of the transaction
the output appeared in.

 o vout Number (int) Required
(exactly 1)

The index number of the
output (vout) as it appeared
in its transaction, with the
first output being 0

 o scriptPubKey String (hex) Required
(exactly 1)

The output’s pubkey script
encoded as hex

 o redeemScript String (hex) Optional (0 or 1) Not needed for single
signature transactions. If the
pubkey script was a script
hash, this must be the
corresponding redeem script

3 Private keys Json array Optional (0 or 1) Json array of base58-
encoded private keys for
signing

 • Key String (base58) Required (1 or
more)

A private key in base58check
format to use to create a
signature for this transaction

4 • SigHash string Optional (0 or 1).
Default = ALL

Signature hash type. Must be
one of: ALL , NONE ,

SINGLE ,

ALL|ANYONECANPAY ,

NONE|ANYONECANPAY , and

SINGLE|ANYONECANPAY

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

184 | P a g e

Return:

Usage and Examples:

Arguments:
1. “hexstring” (string, required) The hex string of the raw transaction
2. “prevtxs” (string optional) An json array of previous dependent transaction outputs

 [(json array of json objects, or ‘null’ if none provided)
 {
 “txid”:”id”, (string, required) The transaction id
 “vout”:n, (numeric, required) The output number
 “scriptPubKey”: “hex”, (string, required) script key, “hex” from previous Trx: (…,
vout:[…,”scriptPubKey:{.., “hex”: value, ..} ..]”)
 “redeemScript”: “hex” (string, required) redeem script if the funds is spending from multi-sig btc
address, otherwise null
 }
 ,...
]
3. “privatekeys” (string, optional) A json array of base58-encoded private keys for signing
 [(json array of strings, or ‘null’ if none provided)
 “privatekey” (string) private key in base58-encoding
 ,...
]
4. “sighashtype” (string, optional, default=ALL) The signature hash type. Must be one of
 “ALL”
 “NONE”
 “SINGLE”
 “ALL|ANYONECANPAY”

Result
No.

Name Type Presence Description

1 result object

Required
(exactly 1)

The results of the signature

 Hex String (hex) Required
(exactly 1)

Raw transaction with
signatures inserted. If no
signatures were made, this
will be the same transaction
provided in parameter #1

 Complete Bool Required
(exactly 1)

True if transaction if fully
signed; false if more
signatures are required.

https://bitcoin.org/en/glossary/signature

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

185 | P a g e

 “NONE|ANYONECANPAY”
 “SINGLE|ANYONECANPAY”

Result:
{
 “hex”: “value”, (string) The raw transaction with signature(s) (hex-encoded string)
 “complete”: n (numeric) if transaction has a complete set of signature (0 if not)
}

Examples:

Create a transaction
> bitcoin-cli signrawtransaction “myhex”

Sign the transaction, and get back the hex
> bitcoin-cli signrawtransaction “myhex”

As a json rpc call
> curl –user myusername –data-binary ‘{“jsonrpc”: “1.0”, “id”:”curltest”, “method”: “signrawtransaction”,
“params”: [“myhex”] }’ –H ‘content-type: text/plain; ‘ http://127.0.0.1:8332/

Example from Bitcoin Core 0.10.0 testnet:

bitcoin-cli –testnet signrawtransaction 01000000011da9283b4ddf8d\

89eb996988b89ead56cecdc44041ab38bf787f1206cd90b51e0000000000ffff\

ffff01405dc600000000001976a9140dfc8bafc8419853b34d5e072ad37d1a51\

59f58488ac00000000

Result:

{

 “hex” :

“01000000011da9283b4ddf8d89eb996988b89ead56cecdc44041ab38bf787f1206cd90b51e000000006a47304402200

ebea9f630f3ee35fa467ffc234592c79538ecd6eb1c9199eb23c4a16a0485a20220172ecaf6975902584987d295b8ddd

f8f46ec32ca19122510e22405ba52d1f13201210256d16d76a49e6c8e2edc1c265d600ec1a64a45153d45c29a2fd0228

c24c3a524ffffffff01405dc600000000001976a9140dfc8bafc8419853b34d5e072ad37d1a5159f58488ac00000000”

,

 “complete” : true

http://127.0.0.1:8332/

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

186 | P a g e

}

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

187 | P a g e

sendrawtransaction

validates a transaction, serializes and broadcasts it to the peer-to-peer network.

Parameters:

Return:

Usage and Examples:

Arguments:
1. “hexstring” (string, required) The hex string of the raw transaction)
2. allowhighfees (187ubscri, optional, default=false) Allow high fees

Result:
“hex” (string) The transaction hash in hex

Param
No.

Name Type Presence Description

1 Transaction String (hex)

Required
(exactly 1)

The transaction to broadcast
encoded as hex

2 Allow High Fees Bool Optional (0 or 1).
Default = false

Set to true to allow the
transaction to pay a high
transaction fee. Set to false
(the default) to prevent
Bitcoin Core from
broadcasting the transaction
if it includes a high fee

Result
No.

Name Type Presence Description

1 result Null/string(hex)

Required
(exactly 1)

If the transaction was
accepted by the node for
broadcast, this will be the
TXID of the transaction
encoded as hex in RPC byte
order. If the transaction was
rejected by the node, this
will set to null, the JSON-RPC
error field will be set to a
code, and the JSON-RPC
message field may contain
an informative error
message

https://bitcoin.org/en/developer-guide#term-network

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

188 | P a g e

Examples:

Create a transaction
> bitcoin-cli createrawtransaction “[{\”txid\” : \”mytxid\”,\”vout\”:0}]” “{\”my
address\”:0.01}”
Sign the transaction, and get back the hex
> bitcoin-cli signrawtransaction “myhex”

Send the transaction (signed hex)
> bitcoin-cli sendrawtransaction “signedhex”

As a json rpc call
> curl –user myusername –data-binary ‘{“jsonrpc”: “1.0”, “id”:”curltest”, “met
hod”: “sendrawtransaction”, “params”: [“signedhex”] }’ –H ‘content-type: text/pl
ain;’ http://127.0.0.1:8332/

Example from Bitcoin Core 0.10.0 testnet:

bitcoin-cli –testnet sendrawtransaction 01000000011da9283b4ddf8d\

89eb996988b89ead56cecdc44041ab38bf787f1206cd90b51e000000006a4730\

4402200ebea9f630f3ee35fa467ffc234592c79538ecd6eb1c9199eb23c4a16a\

0485a20220172ecaf6975902584987d295b8dddf8f46ec32ca19122510e22405\

ba52d1f13201210256d16d76a49e6c8e2edc1c265d600ec1a64a45153d45c29a\

2fd0228c24c3a524ffffffff01405dc600000000001976a9140dfc8bafc84198\

53b34d5e072ad37d1a5159f58488ac00000000

Result:

f5a5ce5988cc72b9b90e8d1d6c910cda53c88d2175177357cc2f2cf0899fbaad

http://127.0.0.1:8332/

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

189 | P a g e

getrawtransaction

gets a hex-encoded serialized transaction or a JSON object describing the transaction. By default, Bitcoin

Core only stores complete transaction data for UTXOs and your own transactions, so the RPC may fail on

historic transactions unless you use the non-default txindex=1 in your Bitcoin Core startup settings.

Note: Keep default txindex. We will be using this rpc to get decoded transaction (see Param #2).

Parameters:

Return:

Null if transaction not found

Serialized transaction if verbose = 0 (not described here)

Decoded transaction if verbose = 1, as described below:

Param
No.

Name Type Presence Description

1 Txid String (hex)

Required
(exactly 1)

The txid of the transaction to
get.

2 Verbose Number (int) Optional (0 or 1).
Default = 0

Set to 1 to return a decoded
transaction, 0 (default) for
serialized transaction.

Result
No.

Name Type Presence Description

1 result Object

Required
(exactly 1)

If the transaction was found,
this will be an object
describing it

 • Txid String(hex) Required
(exactly 1)

The transaction’s id

 • Version Number (int) Required
(exactly 1)

The transaction format
version number

 • Locktime Number (int) Required
(exactly 1)

The transaction’s locktime

 • Vin Array of
input objects

Required
(exactly 1)

An array of objects with
each object being an input
vector (vin) for this
transaction. Input objects
will have the same order
within the array as they

https://bitcoin.org/en/glossary/serialized-transaction
https://bitcoin.org/en/glossary/unspent-transaction-output
https://bitcoin.org/en/developer-reference#remote-procedure-calls-rpcs

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

190 | P a g e

have in the transaction, so
the first input listed will be
input 0

 - Input object Required (1 or
more)

An object describing one of
this transaction’s inputs.
May be a regular input or a
coinbase

 o Txid String Optional (0 or 1) The TXID of the outpoint
being spent, encoded as hex
in RPC byte order. Not
present if this is a coinbase
transaction

 o Vout Number (int) Optional (0 or 1) The output index number
(vout) of the outpoint being
spent. The first output in a
transaction has an index of
0. Not present if this is a
coinbase transaction

 o scriptSig Object Optional (0 or 1) An object describing the
signature script of this input
(described below). Not
present if this is a coinbase
transaction

 ▪ asm String Required
(exactly 1)

The signature script in
decoded form with non-
data-pushing op codes listed

 ▪ hex String (hex) Required
(exactly 1)

The signature script encoded
as hex

 o Coinbase String (hex) Optional (0 or 1) The coinbase (similar to the
hex field of a scriptSig)
encoded as hex. Only
present if this is a coinbase
transaction

 o Sequence Number (int) Required
(exactly 1)

The input sequence number

 • vout Array of
output
objects

Required
(exactly 1)

An array of objects each
describing an output vector
(vout) for this transaction.
Output objects will have the
same order within the array
as they have in the
transaction, so the first

https://bitcoin.org/en/glossary/txid
https://bitcoin.org/en/glossary/outpoint
https://bitcoin.org/en/glossary/rpc-byte-order
https://bitcoin.org/en/glossary/coinbase-transaction
https://bitcoin.org/en/glossary/coinbase-transaction

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

191 | P a g e

output listed will be output
0

 - Output Object Required (1 or
more)

An object describing one of
this transaction’s outputs

 o value Number
(float)

Required
(exactly 1)

The number of bitcoins paid
to this output. May be 0

 o n Number (int) Required
(exactly 1)

The output index number of
this output within this
transaction

 o scriptPubKey Object Required
(exactly 1)

An object describing the
pubkey script

 ▪ Asm String Required
(exactly 1)

The pubkey script in
decoded form with non-
data-pushing op codes listed

 ▪ Hex String (hex) Required
(exactly 1)

The pubkey script encoded
as hex

 ▪ reqSigs Number (int) Optional
(0 or 1)

The number of signatures
required; this is always 1 for
P2PK, P2PKH, and P2SH
(including P2SH multisig
because the redeem script is
not available in the pubkey
script). It may be greater
than 1 for bare multisig. This
value will not be returned
for nulldata or nonstandard
script types (see the type
key below)

 ▪ type String Optional
(0 or 1)

The type of script. This will
be one of the following:
• pubkey for a P2PK script
• pubkeyhash for a P2PKH
script
• scripthash for a P2SH
script
• multisig for a bare multisig
script
• nulldata for nulldata
scripts
• nonstandard for unknown
scripts

 ➢ Addresses Array of
strings

Optional
(0 or 1)

P2PKH or P2SH addresses
used in this transaction.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

192 | P a g e

Usage and Examples:

Arguments:
1. “txid” (string, required) The transaction id
2. verbose (numeric, optional, default=0) If 0, return a string, other ret
urn a json object

Result (if verbose is not set or set to 0):
“data” (string) The serialized, hex-encoded data for ‘txid’

Result (if verbose > 0):
{
 “hex” : “data”, (string) The serialized, hex-encoded data for ‘txid’
 “txid” : “id”, (string) The transaction id (same as provided)
 “version” : n, (numeric) The version

This array will not be
returned for nulldata or
nonstandard script types

 ✓ address Required (1 or
more)

A P2PKH or P2SH address

 • Blockhash String (hex) Optional
(0 or 1)

If the transaction has been
included in a block on the
local best block chain, this is
the hash of that block
encoded as hex in RPC byte
order

 • Confirmations Number (int) Required
(exactly 1)

If the transaction has been
included in a block on the
local best block chain, this is
how many confirmations it
has. Otherwise, this is 0

 • Time Number (int) Optional
(0 or 1)

If the transaction has been
included in a block on the
local best block chain, this is
the block header time of
that block (may be in the
future)

 • blocktime Number (int) Optional
(0 or 1)

This field is currently
identical to the time field
described above

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

193 | P a g e

 “locktime” : ttt, (numeric) The lock time
 “vin” : [(array of json objects)
 {
 “txid”: “id”, (string) The transaction id
 “vout”: n, (numeric)
 “scriptSig”: { (json object) The script
 “asm”: “asm”, (string) asm
 “hex”: “hex” (string) hex
 },
 “sequence”: n (numeric) The script sequence number
 }
 ,...
],
 “vout” : [(array of json objects)
 {
 “value” : x.xxx, (numeric) The value in btc
 “n” : n, (numeric) index
 “scriptPubKey” : { (json object)
 “asm” : “asm”, (string) the asm
 “hex” : “hex”, (string) the hex
 “reqSigs” : n, (numeric) The required sigs
 “type” : “pubkeyhash”, (string) The type, eg ‘pubkeyhash’
 “addresses” : [(json array of string)
 “bitcoinaddress” (string) bitcoin address
 ,...
]
 }
 }
 ,...
],
 “blockhash” : “hash”, (string) the block hash
 “confirmations” : n, (numeric) The confirmations
 “time” : ttt, (numeric) The transaction time in seconds since epoc
h (Jan 1 1970 GMT)
 “blocktime” : ttt (numeric) The block time in seconds since epoch (Jan
 1 1970 GMT)
}

Examples:

> bitcoin-cli getrawtransaction “mytxid”
> bitcoin-cli getrawtransaction “mytxid” 1
> curl –user myusername –data-binary ‘{“jsonrpc”: “1.0”, “id”:”curltest”, “met

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

194 | P a g e

hod”: “getrawtransaction”, “params”: [“mytxid”, 1] }’ –H ‘content-type: text/pla
in;’ http://127.0.0.1:8332/

Example from Bitcoin Core 0.10.0 testnet:

bitcoin-cli –testnet getrawtransaction \

 ef7c0cbf6ba5af68d2ea239bba709b26ff7b0b669839a63bb01c2cb8e8de481e

Result:

0100000001268a9ad7bfb21d3c086f0ff28f73a064964aa069ebb69a9e437da8\

5c7e55c7d7000000006b483045022100ee69171016b7dd218491faf6e13f53d4\

0d64f4b40123a2de52560feb95de63b902206f23a0919471eaa1e45a0982ed28\

8d374397d30dff541b2dd45a4c3d0041acc0012103a7c1fd1fdec50e1cf3f0cc\

8cb4378cd8e9a2cee8ca9b3118f3db16cbbcf8f326ffffffff0350ac60020000\

00001976a91456847befbd2360df0e35b4e3b77bae48585ae06888ac80969800\

000000001976a9142b14950b8d31620c6cc923c5408a701b1ec0a02088ac002d\

3101000000001976a9140dfc8bafc8419853b34d5e072ad37d1a5159f58488ac\

00000000

http://127.0.0.1:8332/

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

195 | P a g e

Network
Use these RPCs to communicate with the P2P network.

Addnode
attempts to add or remove a node from the addnode list, or to try a connection to a node once.

Parameters:

Return:

Param
No.

Name Type Presence Description

1 Node String

Required
(exactly 1)

The node to add as a string
in the form of <IP
address>:<port>. The IP
address may be a hostname
resolvable through DNS, an
Ipv4 address, an Ipv4-as-Ipv6
address, or an Ipv6 address

2 Command String

Required
(exactly 1)

What to do with the IP
address above. Options are:
• add to add a node to the
addnode list. This will not
connect immediately if the
outgoing connection slots
are full
• remove to remove a node
from the list. If currently
connected, this will
disconnect immediately
• onetry to immediately
attempt connection to the
node even if the outgoing
connection slots are full; this
will only attempt the
connection once

Result
No.

Name Type Presence Description

1 result null

Required
(exactly 1)

Always JSON null whether
the node was added,
removed, tried-and-
connected, or tried-and-not-
connected. The JSON-RPC
error field will be set only if

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

196 | P a g e

Usage and Examples:

Arguments:
1. “node” (string, required) The node (see getpeerinfo for nodes)
2. “command” (string, required) ‘add’ to add a node to the list, ‘remove’ to re
move a node from the list, ‘onetry’ to try a connection to the node once

Examples:
> bitcoin-cli addnode “192.168.0.6:8333” “onetry”
> curl –user myusername –data-binary ‘{“jsonrpc”: “1.0”, “id”:”curltest”, “met
hod”: “addnode”, “params”: [“192.168.0.6:8333”, “onetry”] }’ –H ‘content-type: t
ext/plain;’ http://127.0.0.1:8332/

Example from Bitcoin Core 0.10.0 testnet:

bitcoin-cli –testnet addnode 192.0.2.113:18333 onetry

Result (no output from bitcoin-cli because result is set to null).

you try removing a node that
is not on the addnodes list

http://127.0.0.1:8332/

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

197 | P a g e

getaddednodeinfo
returns information about the given added node, or all added nodes (except onetry nodes). Only nodes which have

been manually added using the addnode RPC will have their information displayed.

Parameters:

Return:

Param
No.

Name Type Presence Description

1 Details Bool

Required
(exactly 1)

Set to true to display
detailed information about
each added node; set to false
to only display the IP address
or hostname and port added

2 Node String

Optional (0 or 1) The node to get information
about in the same <IP
address>:<port> format as
the addnode RPC. If this
parameter is not provided,
information about all added
nodes will be returned

Result
No.

Name Type Presence Description

1 result array Required
(exactly 1)

An array containing objects
describing each added node.
If no added nodes are
present, the array will be
empty. Nodes added with
onetry will not be returned

 • Added node Object Optional (0 or 1) An object containing details
about a single added node

 - Addednode String Required
(exactly 1)

 An added node in the same
<IP address>:<port> format
as used in the addnode RPC.
This element is present for
any added node whether or
not the Details parameter
was set to true

 - Connected Bool Optional (0 or 1) If the Details parameter was
set to true, this will be set to
true if the node is currently
connected and false if it is
not

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

198 | P a g e

Usage and Examples:

Arguments:
1. dns (198ubscri, required) If false, only a list of added nodes will be p
rovided, otherwise connected information will also be available.
2. “node” (string, optional) If provided, return information about this specif
ic node, otherwise all nodes are returned.

Result:
[
 {
 “addednode” : “192.168.0.201”, (string) The node ip address
 “connected” : true|false, (198ubscri) If connected
 “addresses” : [
 {
 “address” : “192.168.0.201:8333”, (string) The bitcoin server host and
 port
 “connected” : “outbound” (string) connection, inbound or outb
ound
 }
 ,...
]

 - Addresses Array of
objects

Optional (0 or 1) If the Details parameter was
set to true, this will be an
array of addresses belonging
to the added node

 o Address Object Optional (0 or
more)

An object describing one of
this node’s addresses

 ▪ Address String Required
(exactly 1)

An IP address and port
number of the node. If the
node was added using a DNS
address, this will be the
resolved IP address

 ▪ connected string Required
(exactly 1)

Whether or not the local
node is connected to this
addnode using this IP
address. Valid values are:
• false for not connected
• inbound if the addnode
connected to us
• outbound if we connected
to the addnode

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

199 | P a g e

 }
 ,...
]

Examples:
> bitcoin-cli getaddednodeinfo true
> bitcoin-cli getaddednodeinfo true “192.168.0.201”
> curl –user myusername –data-binary ‘{“jsonrpc”: “1.0”, “id”:”curltest”, “met
hod”: “getaddednodeinfo”, “params”: [true, “192.168.0.201”] }’ –H ‘content-type:
 text/plain;’ http://127.0.0.1:8332/

Example from Bitcoin Core 0.10.0 testnet:

bitcoin-cli –testnet getaddednodeinfo true

Result:

[

 {

 “addednode” : “bitcoind.example.com:18333”,

 “connected” : true,

 “addresses” : [

http://127.0.0.1:8332/

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

200 | P a g e

getconnectioncount

returns the number of connections to other nodes.

Parameters: None

Return:

Usage and Examples:
Arguments: none

Result:
n (numeric) The connection count

Examples:
> bitcoin-cli getconnectioncount

> curl –user myusername –data-binary ‘{“jsonrpc”: “1.0”, “id”:”curltest”, “met

hod”: “getconnectioncount”, “params”: [] }’ –H ‘content-type: text/plain;’ http:

//127.0.0.1:8332/

Example from Bitcoin Core 0.10.0 testnet:

bitcoin-cli –testnet getconnectioncount

Result:

14

Result
No.

Name Type Presence Description

1 result Number (int) Required
(exactly 1)

The total number of
connections to other nodes
(both inbound and
outbound)

https://github.com/bitcoin/bitcoin/tree/0.10

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

201 | P a g e

getnettotals
returns information about network traffic, including bytes in, bytes out, and the current time.

Parameters: None

Return:

Usage and Examples:
Result:
{

 “totalbytesrecv”: n, (numeric) Total bytes received

 “totalbytessent”: n, (numeric) Total bytes sent

 “timemillis”: t (numeric) Total cpu time

}

Examples:
> bitcoin-cli getnettotals

> curl –user myusername –data-binary ‘{“jsonrpc”: “1.0”, “id”:”curltest”, “met

hod”: “getnettotals”, “params”: [] }’ –H ‘content-type: text/plain;’ http://127.

0.0.1:8332/

Example from Bitcoin Core 0.10.0 testnet:

Result
No.

Name Type Presence Description

1 result object Required
(exactly 1)

An object containing
information about the
node’s network totals

 • Totalbytesrecv Number (int) Required
(exactly 1)

The total number of bytes
received since the node was
last restarted

 • Totalbytesent Number (int) Required
(exactly 1)

The total number of bytes
sent since the node was last
restarted

 • timemillis Number (int) Required
(exactly 1)

Unix epoch time in
milliseconds according to the
operating system’s clock
(not the node adjusted time)

http://0.0.0.127/

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

202 | P a g e

bitcoin-cli –testnet getnettotals

Result:

{

 “totalbytesrecv” : 723992206,

 “totalbytessent” : 16846662695,

 “timemillis” : 1419268217354

}

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

203 | P a g e

getnetworkinfo
returns information about the node’s connection to the network.

Parameters: None

Return:

Result
No.

Name Type Presence Description

1 result object Required
(exactly 1)

Information about this
node’s connection to the
network

 • version Number
(int)

Required
(exactly 1)

This node’s version of
Bitcoin Core in its internal
integer format.

 • subversion string Required
(exactly 1)

The user agent this node
sends in its version message

 • protocolversion Number
(int)

Required
(exactly 1)

The protocol version number
used by this node.

 • timeoffset Number
(int)

Required
(exactly 1)

The offset of the node’s
clock from the computer’s
clock (both in UTC) in
seconds. The offset may be
up to 4200 seconds (70
minutes)

 • connections Number
(int)

Required
(exactly 1)

The total number of open
connections (both outgoing
and incoming) between this
node and other nodes

 • proxy string Required
(exactly 1)

The hostname/IP address
and port number of the
proxy, if set, or an empty
string if unset

 • relayfree Number
(float)

Required
(exactly 1)

The minimum fee a low-
priority transaction must pay
in order for this node to
accept it into its memory
pool

 • localservices String
(hex)

Required
(exactly 1)

The services supported by
this node as advertised in its
version message

 • networks array Required
(exactly 1)

An array with three objects:
one describing the Ipv4
connection, one describing

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

204 | P a g e

the Ipv6 connection, and
one describing the Tor
hidden service (onion)
connection

 - Network object Optional (0 to 3) An object describing a
network. If the network is
unroutable, it will not be
returned

 o name string Required
(exactly 1)

The name of the network.
Either ipv4, ipv6, or onion

 o limited bool Required
(exactly 1)

Set to true if only
connections to this network
are allowed according to the
–onlynet Bitcoin Core
command-
line/configuration-file
parameter. Otherwise set to
false

 o reachable bool Required
(exactly 1)

Set to true if connections
can be made to or from this
network. Otherwise set to
false

 o proxy string Required
(exactly 1)

The hostname and port of
any proxy being used for this
network. If a proxy is not in
use, an empty string

 o localaddresses Array Required
(exactly 1)

An array of objects each
describing the local
addresses this node believes
it listens on

 ▪ Address object Optional (0 or
more)

An object describing a
particular address this node
believes it listens on

 ➢ Addre
ss

string Required
(exactly 1)

An IP address or .onion
address this node believes it
listens on. This may be
manually configured, auto
detected, or based on
version messages this node
received from its peers

 ➢ port Number
(int)

Required
(exactly 1)

The port number this node
believes it listens on for the
associated address. This may

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

205 | P a g e

Usage and Examples:
Result:
{

 “version”: xxxxx, (numeric) the server version

 “subversion”: “/Satoshi:x.x.x/”, (string) the server subversion string

 “protocolversion”: xxxxx, (numeric) the protocol version

 “localservices”: “xxxxxxxxxxxxxxxx”, (string) the services we offer to the net

work

 “timeoffset”: xxxxx, (numeric) the time offset

 “connections”: xxxxx, (numeric) the number of connections

 “networks”: [(array) information per network

 {

 “name”: “xxx”, (string) network (ipv4, ipv6 or onion)

 “limited”: true|false, (205ubscri) is the network limited using

-onlynet?

 “reachable”: true|false, (205ubscri) is the network reachable?

 “proxy”: “host:port” (string) the proxy that is used for this

network, or empty if none

 }

 ,...

],

 “relayfee”: x.xxxxxxxx, (numeric) minimum relay fee for non-fre

e transactions in btc/kb

be manually configured,
auto detected, or based on
version messages this node
received from its peers

 ➢ score Number
(int)

Required
(exactly 1)

The self-assigned score this
node gives to this
connection; higher scores
means the node thinks this
connection is better

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

206 | P a g e

 “localaddresses”: [(array) list of local addresses

 {

 “address”: “xxxx”, (string) network address

 “port”: xxx, (numeric) network port

 “score”: xxx (numeric) relative score

 }

 ,...

]

}

Examples:
> bitcoin-cli getnetworkinfo

> curl –user myusername –data-binary ‘{“jsonrpc”: “1.0”, “id”:”curltest”, “met

hod”: “getnetworkinfo”, “params”: [] }’ –H ‘content-type: text/plain;’ http://12

7.0.0.1:8332/

Example from Bitcoin Core 0.10.0 testnet:

bitcoin-cli –testnet getnetworkinfo

Result:

{

 “version” : 100000,

 “subversion” : “/Satoshi:0.10.0/”,

 “protocolversion” : 70002,

 “localservices” : “0000000000000001”,

 “timeoffset” : 0,

 “connections” : 51,

 “networks” : [

 {

 “name” : “ipv4”,

 “limited” : false,

http://0.0.0.12/

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

207 | P a g e

 “reachable” : true,

 “proxy” : “”

 },

 {

 “name” : “ipv6”,

 “limited” : false,

 “reachable” : true,

 “proxy” : “”

 },

 {

 “name” : “onion”,

 “limited” : false,

 “reachable” : false,

 “proxy” : “”

 }

],

 “relayfee” : 0.00001000,

 “localaddresses” : [

 {

 “address” : “192.0.2.113”,

 “port” : 18333,

 “score” : 6470

 },

 {

 “address” : “0600:3c03::f03c:91ff:fe89:dfc4”,

 “port” : 18333,

 “score” : 2029

 }

]

}

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

208 | P a g e

getpeerinfo
returns data about each connected network node.

Parameters: None

Return:

Result
No.

Name Type Presence Description

1 result array Required
(exactly 1)

An array containing objects
each describing one
connected node. If no
connections present, the
array will be empty.

 • Node Object Optional (0 or
more)

An object describing a
particular connected node.

 - id Number (int) Required
(exactly 1)

The node’s index number in
the local node address
database

 - addr String Required
(exactly 1)

The IP address and port
number used for the
connection to the remote
node

 - addrlocal String Optional (0 or 1) Our IP address and port
number according to the
remote node.

 - services String (hex) Required
(exactly 1)

The services advertised by
the remote node in its
version message

 - lastsend Number (int) Required
(exactly 1)

The Unix epoch time when
we last successfully sent
data to the TCP socket for
this node

 - lastrecv Number (int) Required
(exactly 1)

The Unix epoch time when
we last received data from
this node

 - bytesent Number (int) Required
(exactly 1)

The total number of bytes
we’ve sent to this node

 - conntime Number (int) Required
(exactly 1)

The total number of bytes
we’ve received from this
node

 - pingtime Number (float) Required
(exactly 1)

The number of seconds this
node took to respond to our
last P2P ping message

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

209 | P a g e

 - pingwait Number (float) Optional (0 or 1) The number of seconds
we’ve been waiting for this
node to respond to a P2P
ping message. Only shown if
there’s an outstanding ping
message

 - version Number (int) Required
(exactly 1)

The protocol version number
used by this node

 - subver string Required
(exactly 1)

The user agent this node
sends in its version message.
This string will have been
sanitized to prevent
corrupting the JSON results.
May be an empty string

 - inbound bool Required
(exactly 1)

Set to true if this node
connected to us; set to false
if we connected to this node

 - startingheight Number (int) Required
(exactly 1)

The height of the remote
node’s block chain when it
connected to us as reported
in its version message

 - banscore Number (int) Required
(exactly 1)

The ban score we’ve
assigned the node based on
any 209ubscript209ur it’s
made. By default, Bitcoin
Core disconnects when the
ban score reaches 100

 - synced_head
ers

Number (int) Required
(exactly 1)

The highest-height header
we have in common with
this node based the last P2P
headers message it sent us.
If a headers message has not
been received, this will be
set to -1

 - synced_block
s

Number (int) Required
(exactly 1)

The highest-height block we
have in common with this
node based on P2P inv
messages this node sent us.
If no block inv messages
have been received from this
node, this will be set to -1

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

210 | P a g e

Usage and Examples:

Result:
[
 {
 “id”: n, (numeric) Peer index
 “addr”:”host:port”, (string) The ip address and port of the peer
 “addrlocal”:”ip:port”, (string) local address
 “services”:”xxxxxxxxxxxxxxxx”, (string) The services offered
 “lastsend”: ttt, (numeric) The time in seconds since epoch (Jan 1
1970 GMT) of the last send
 “lastrecv”: ttt, (numeric) The time in seconds since epoch (Jan 1
1970 GMT) of the last receive
 “bytessent”: n, (numeric) The total bytes sent
 “bytesrecv”: n, (numeric) The total bytes received
 “conntime”: ttt, (numeric) The connection time in seconds since ep
och (Jan 1 1970 GMT)
 “pingtime”: n, (numeric) ping time
 “pingwait”: n, (numeric) ping wait
 “version”: v, (numeric) The peer version, such as 7001
 “210ubscri”: “/Satoshi:0.8.5/”, (string) The string version
 “inbound”: true|false, (210ubscri) Inbound (true) or Outbound (false)
 “startingheight”: n, (numeric) The starting height (block) of the peer

 “banscore”: n, (numeric) The ban score

 - syncnode Bool Required
(exactly 1)

Whether we’re using this
node as our syncnode during
initial block download

 - inflight array Required
(exactly 1)

An array of blocks which
have been requested from
this peer. May be empty

 o Blocks Number (int) Optional (0 or
more)

The height of a block being
requested from the remote
peer

 - whitelisted bool Required
(exactly 1)

Set to true if the remote
peer has been whitelisted;
otherwise, set to false.
Whitelisted peers will not be
banned if their ban score
exceeds the maximum (100
by default). By default, peers
connecting from localhost
are whitelisted

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

211 | P a g e

 “synced_headers”: n, (numeric) The last header we have in common with
this peer
 “synced_blocks”: n, (numeric) The last block we have in common with t
his peer
 “inflight”: [
 n, (numeric) The heights of blocks we’re currently
 asking from this peer
 ...
]
 }
 ,...
]

Examples:
> bitcoin-cli getpeerinfo
> curl –user myusername –data-binary ‘{“jsonrpc”: “1.0”, “id”:”curltest”, “met
hod”: “getpeerinfo”, “params”: [] }’ –H ‘content-type: text/plain;’ http://127.0
.0.1:8332/

Example from Bitcoin Core 0.10.0 testnet:

bitcoin-cli –testnet getpeerinfo

Result:

[

 {

 “id” : 9,

 “addr” : “192.0.2.113:18333”,

 “addrlocal” : “192.0.2.51:18333”,

 “services” : “0000000000000002”,

 “lastsend” : 1419277992,

 “lastrecv” : 1419277992,

 “bytessent” : 4968,

 “bytesrecv” : 105078,

 “conntime” : 1419265985,

 “pingtime” : 0.05617800,

 “version” : 70001,

 “subver” : “/Satoshi:0.8.6/”,

http://127.0.0.0/

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

212 | P a g e

 “inbound” : false,

 “startingheight” : 315280,

 “banscore” : 0,

 “synced_headers” : -1,

 “synced_blocks” : -1,

 “inflight” : [

],

 “whitelisted” : false

 }

]

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

213 | P a g e

Blocks
Use these RPCs to get information / statistics about the blocks and blockchain.

Getbestblockhash
returns the header hash of the most recent block on the best block chain.

Parameters: None

Return:

Usage and Examples:

Result
“hex” (string) the block hash hex encoded

Examples
> bitcoin-cli getbestblockhash
> curl –user myusername –data-binary ‘{“jsonrpc”: “1.0”, “id”:”curltest”, “met
hod”: “getbestblockhash”, “params”: [] }’ –H ‘content-type: text/plain;’ http://
127.0.0.1:8332/

Example from Bitcoin Core 0.10.0 testnet:

bitcoin-cli –testnet getbestblockhash

Result:

0000000000075c58ed39c3e50f99b32183d090aefa0cf8c324a82eea9b01a887

Result
No.

Name Type Presence Description

1 result String (hex) Required
(exactly 1)

The hash of the block header
from the most recent block
on the best block chain,
encoded as hex in RPC byte
order

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

214 | P a g e

getblock
gets a block with a particular header hash from the local block database either as a JSON object or as a serialized

block.

Parameters:

Return:

Serialized block if format = false

Decoded transaction if format = true or omitted, as described below:

Param
No.

Name Type Presence Description

1 Header hash String (hex)

Required
(exactly 1)

The hash of the header of
the block to get, encoded as
hex in RPC byte order

2 Format Bool Optional (0 or 1) Set to false to get the block
in serialized block format; set
to true (the default) to get
the decoded block as a JSON
object. We will use true for
our implementation.

Result
No.

Name Type Presence Description

1 result Object / null

Required
(exactly 1)

An object containing the
requested block, or JSON null
if an error occurred

 • hash String(hex) Required
(exactly 1)

The hash of this block’s block
header encoded as hex in
RPC byte order. This is the
same as the hash provided in
parameter #1

 • confirmations Number (int) Required
(exactly 1)

The number of confirmations
the transactions in this block
have, starting at 1 when this
block is at the tip of the best
block chain. This score will
be -1 if the the block is not
part of the best block chain

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

215 | P a g e

 • size Number (int) Required
(exactly 1)

The size of this block in
serialized block format,
counted in bytes

 • height Number (int) Required
(exactly 1)

The height of this block on its
block chain

 • version Number (int) Required
(exactly 1)

This block’s version number.

 • merkelroot String (hex) Required
(exactly 1)

The merkle root for this
block, encoded as hex in RPC
byte order

 • tx array Required
(exactly 1)

An array containing the
TXIDs of all transactions in
this block. The transactions
appear in the array in the
same order they appear in
the serialized block

 - txid String (hex) Required (1 or
more)

The TXID of a transaction in
this block, encoded as hex in
RPC byte order

 • time Number (int) Required
(exactly 1)

The value of the time field in
the block header, indicating
approximately when the
block was created

 • nonce Number (int) Required
(exactly 1)

The nonce which was
successful at turning this
particular block into one that
could be added to the best
block chain

 • bits String (hex) Required
(exactly 1)

The value of the nBits field in
the block header, indicating
the target threshold this
block’s header had to pass

 • difficulty Number
(float)

Required
(exactly 1)

The estimated amount of
work done to find this block
relative to the estimated
amount of work done to find
block 0

 • chainwork String (hex) Required
(exactly 1)

The estimated number of
block header hashes miners
had to check from the
genesis block to this block,
encoded as big-endian hex

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

216 | P a g e

Usage and Examples:

Result

“hex” (string) the block hash hex encoded

Examples

> bitcoin-cli getbestblockhash

> curl –user myusername –data-binary ‘{“jsonrpc”: “1.0”, “id”:”curltest”, “met

hod”: “getbestblockhash”, “params”: [] }’ –H ‘content-type: text/plain;’ http://

127.0.0.1:8332/

Example from Bitcoin Core 0.10.0 testnet:

bitcoin-cli –testnet getblock \

 000000000fe549a89848c76070d4132872cfb6efe5315d01d7ef77e4900f2d39 \

 true

Result:

{

 “hash” : “000000000fe549a89848c76070d4132872cfb6efe5315d01d7ef77e4900f2d39”,

 “confirmations” : 88029,

 “size” : 189,

 “height” : 227252,

 “version” : 2,

 “merkleroot” : “c738fb8e22750b6d3511ed0049a96558b0bc57046f3f77771ec825b22d6a6f4a”,

 “tx” : [

 • previousblockhash String (hex) Required
(exactly 1)

The hash of the header of
the previous block, encoded
as hex in RPC byte order

 • nextblockhash String (hex) Optional (0 or 1) The hash of the next block
on the best block chain, if
known, encoded as hex in
RPC byte order

https://bitcoin.org/en/glossary/block
https://bitcoin.org/en/glossary/block-chain
https://bitcoin.org/en/glossary/rpc-byte-order

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

217 | P a g e

 “c738fb8e22750b6d3511ed0049a96558b0bc57046f3f77771ec825b22d6a6f4a”

],

 “time” : 1398824312,

 “nonce” : 1883462912,

 “bits” : “1d00ffff”,

 “difficulty” : 1.00000000,

 “chainwork” : “00083ada4a4009841a”,

 “previousblockhash” : “00000000c7f4990e6ebf71ad7e21a47131dfeb22c759505b3998d7a814c011df”,

 “nextblockhash” : “00000000afe1928529ac766f1237657819a11cfcc8ca6d67f119e868ed5b6188”

}

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

218 | P a g e

getblockchaininfo
provides information about the current state of the block chain.

Parameters: None

Return:

Result
No.

Name Type Presence Description

1 result Object Required
(exactly 1)

A Json object containing
information about the
current state of the local
block chain.

 • chain String Required
(exactly 1)

The name of the block chain.
One of: main for mainnet,
test for testnet, or regtest
for regtest.

 • blocks Number (int) Required
(exactly 1)

The number of validated
blocks in the local best block
chain. For a new node with
just the hardcoded genesis
block, this will be 0

 • headers Number (int) Required
(exactly 1)

The number of validated
headers in the local best
headers chain. For a new
node with just the
hardcoded genesis block,
this will be zero. This
number may be higher than
the number of blocks

 • bestblockhash String (hex) Required
(exactly 1)

The hash of the header of
the highest validated block
in the best block chain,
encoded as hex in RPC byte
order.

 • difficulty Number (float) Required
(exactly 1)

The difficulty of the highest-
height block in the best
block chain

 • verificationprogr
ess

Number (float) Required
(exactly 1)

Estimate of what percentage
of the block chain
transactions have been
verified so far, starting at 0.0
and increasing to 1.0 for fully
verified. May slightly exceed

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

219 | P a g e

Usage and Examples:

Result:

{

 “chain”: “xxxx”, (string) current network name as defined in BIP70 (mai

n, test, regtest)

 “blocks”: xxxxxx, (numeric) the current number of blocks processed in

the server

 “headers”: xxxxxx, (numeric) the current number of headers we have vali

dated

 “bestblockhash”: “...”, (string) the hash of the currently best block

 “difficulty”: xxxxxx, (numeric) the current difficulty

 “verificationprogress”: xxxx, (numeric) estimate of verification progress [0..

1]

 “chainwork”: “xxxx” (string) total amount of work in active chain, in hexa

decimal

1.0 when fully synced to
account for transactions in
the memory pool which
have been verified before
being included in a block

 • chainwork String (hex) Required
(exactly 1)

The estimated number of
block header hashes
checked from the genesis
block to this block, encoded
as big-endian hex

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

220 | P a g e

}

Examples:

> bitcoin-cli getblockchaininfo

> curl –user myusername –data-binary ‘{“jsonrpc”: “1.0”, “id”:”curltest”, “met

hod”: “getblockchaininfo”, “params”: [] }’ –H ‘content-type: text/plain;’ http:/

/127.0.0.1:8332/

Example from Bitcoin Core 0.10.0 testnet

bitcoin-cli –testnet getblockchaininfo

Result

{

 “chain” : “test”,

 “blocks” : 315280,

 “headers” : 315280,

 “bestblockhash” : “000000000ebb17fb455e897b8f3e343eea1b07d926476d00bc66e2c0342ed50f”,

 “difficulty” : 1.00000000,

 “verificationprogress” : 1.00000778,

 “chainwork” : “00015e984b4fb9f9b350”

}

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

221 | P a g e

getblockcount

returns the number of blocks in the local best block chain.

Parameters: None

Return:

Usage and Examples:

Result:

n (numeric) The current block count

Examples:

> bitcoin-cli getblockcount

> curl –user myusername –data-binary ‘{“jsonrpc”: “1.0”, “id”:”curltest”, “met

hod”: “getblockcount”, “params”: [] }’ –H ‘content-type: text/plain;’ http://127

.0.0.1:8332/

Example from Bitcoin Core 0.10.0 testnet:

bitcoin-cli –testnet getblockcount

Result:

315280

Result
No.

Name Type Presence Description

1 result Number (int) Required
(exactly 1)

The number of blocks in the
local best block chain. For a
new node with only the
hardcoded genesis block,
this number will be 0

https://bitcoin.org/en/glossary/block
https://bitcoin.org/en/glossary/block-chain
http://0.0.0.127/

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

222 | P a g e

getblockhash
returns the header hash of a block at the given height in the local best block chain.

Parameters:

Return:

Arguments:

1. index (numeric, required) The block index

Result:

“hash” (string) The block hash

Examples:

> bitcoin-cli getblockhash 1000

> curl –user myusername –data-binary ‘{“jsonrpc”: “1.0”, “id”:”curltest”, “met

hod”: “getblockhash”, “params”: [1000] }’ –H ‘content-type: text/plain;’ http://

Param
No.

Name Type Presence Description

1 Block height Number (int)

Required
(exactly 1)

The height of the block
whose header hash should
be returned. The height of
the hardcoded genesis block
is 0

Result
No.

Name Type Presence Description

1 result String (hex) /
null

Required
(exactly 1)

The hash of the block at the
requested height, encoded
as hex in RPC byte order, or
JSON null if an error occurred

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

223 | P a g e

127.0.0.1:8332/

Example from Bitcoin Core 0.10.0 testnet:

bitcoin-cli –testnet getblockhash 240886

Result:

00000000a0faf83ab5799354ae9c11da2a2bd6db44058e03c528851dee0a3fff

https://github.com/bitcoin/bitcoin/tree/0.10

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

224 | P a g e

verifychain
verifies each entry in the local block chain database.

Parameters:

Return:

Param
No.

Name Type Presence Description

1 Check level Number (int)

Optional (0 or 1) How thoroughly to check
each block, from 0 to 4.
Default is the level set with
the –checklevel command
line argument; if that isn’t
set, the default is 3. Each
higher level includes the
tests from the lower levels

Levels are:
0. Read from disk to ensure
the files are accessible
1. Ensure each block is valid
2. Make sure undo files can
be read from disk and are in
a valid format
3. Test each block undo to
ensure it results in correct
state
4. After undoing blocks,
reconnect them to ensure
they reconnect correctly

2 Number of blocks Number (int)

Optional (0 or 1) The number of blocks to
verify. Set to 0 to check all
blocks. Defaults to the value
of the –checkblocks
command-line argument; if
that isn’t set, the default is
288

Result
No.

Name Type Presence Description

1 result bool

Required
(exactly 1)

Set to true if verified; set to
false if verification failed for
any reason

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

225 | P a g e

Usage and Examples:

Arguments:

1. checklevel (numeric, optional, 0-4, default=3) How thorough the block verif

ication is.

2. numblocks (numeric, optional, default=288, 0=all) The number of blocks to

check.

Result:

true|false (225ubscri) Verified or not

Examples:

> bitcoin-cli verifychain

> curl –user myusername –data-binary ‘{“jsonrpc”: “1.0”, “id”:”curltest”, “met

hod”: “verifychain”, “params”: [] }’ –H ‘content-type: text/plain;’ http://127.0

.0.1:8332/

Example from Bitcoin Core 0.10.0 testnet:

bitcoin-cli –testnet verifychain 4 10000

Result:

true

http://127.0.0.0/
https://github.com/bitcoin/bitcoin/tree/0.10

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

226 | P a g e

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

227 | P a g e

getchaintips
returns information about the highest-height block (tip) of each local block chain, including the main chain as well as

orphaned branches.

Parameters: None

Return:

Result
No.

Name Type Presence Description

1 result array Required
(exactly 1)

An array of JSON objects,
with each object describing a
chain tip. At least one tip—
the local best block chain—
will always be present

 • tip object Required (1 or
more)

An object describing a
particular chain tip. The first
object will always describe
the active chain (the local
best block chain)

 - height Number
(int)

Required
(exactly 1)

The height of the highest
block in the chain. A new
node with only the genesis
block will have a single tip
with height of 0

 - hash String
(hex)

Required
(exactly 1)

The hash of the highest
block in the chain, encoded
as hex in RPC byte order

 - branchlen Number
(int)

Required
(exactly 1)

The number of blocks that
are on this chain but not on
the main chain. For the local
best block chain, this will be
0; for all other chains, it will
be at least 1

 - status string Required
(exactly 1)

The status of this chain.
Valid values are:
• active for the local best
block chain
• invalid for a chain that
contains one or more invalid
blocks
• headers-only for a chain
with valid headers whose
corresponding blocks both

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

228 | P a g e

Usage and Examples:

Result:

[

 {

 “height”: xxxx, (numeric) height of the chain tip

 “hash”: “xxxx”, (string) block hash of the tip

 “branchlen”: 0 (numeric) zero for main chain

 “status”: “active” (string) “active” for the main chain

 },

 {

 “height”: xxxx,

 “hash”: “xxxx”,

 “branchlen”: 1 (numeric) length of branch connecting the tip to the

 main chain

 “status”: “xxxx” (string) status of the chain (active, valid-fork, va

lid-headers, headers-only, invalid)

haven’t been validated and
aren’t stored locally
• valid-headers for a chain
with valid headers whose
corresponding blocks are
stored locally, but which
haven’t been fully validated
• valid-fork for a chain which
is fully validated but which
isn’t part of the local best
block chain (it was probably
the local best block chain at
some point)
• unknown for a chain
whose reason for not being
the active chain is unknown

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

229 | P a g e

 }

]

Possible values for status:

1. “invalid” This branch contains at least one invalid block

2. “headers-only” Not all blocks for this branch are available, but th

e headers are valid

3. “valid-headers” All blocks are available for this branch, but they w

ere never fully validated

4. “valid-fork” This branch is not part of the active chain, but is

fully validated

5. “active” This is the tip of the active main chain, which is c

ertainly valid

Examples:

> bitcoin-cli getchaintips

> curl –user myusername –data-binary ‘{“jsonrpc”: “1.0”, “id”:”curltest”, “met

hod”: “getchaintips”, “params”: [] }’ –H ‘content-type: text/plain;’ http://127.

0.0.1:8332/

Example from Bitcoin Core 0.10.0 testnet:

bitcoin-cli –testnet getchaintips

[

 {

 “height” : 312647,

 “hash” : “000000000b1be96f87b31485f62c1361193304a5ad78acf47f9164ea4773a843”,

 “branchlen” : 0,

 “status” : “active”

 },

 {

 “height” : 282072,

http://0.0.0.127/
https://github.com/bitcoin/bitcoin/tree/0.10

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

230 | P a g e

 “hash” : “00000000712340a499b185080f94b28c365d8adb9fc95bca541ea5e708f31028”,

 “branchlen” : 5,

 “status” : “valid-fork”

 },

 {

 “height” : 281721,

 “hash” : “000000006e1f2a32199629c6c1fbd37766f5ce7e8c42bab0c6e1ae42b88ffe12”,

 “branchlen” : 1,

 “status” : “valid-headers”

 },

]

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

231 | P a g e

Miscellaneous
Other general purpose RPCs.

Verifymessage
verifies a signed message.

Parameters:

Return:

Param
No.

Name Type Presence Description

1 Address String (base58)

Required
(exactly 1)

The P2PKH address (in
Base58Check encoding)
corresponding to the private
key which made the
signature. A P2PKH address
is a hash of the public key
corresponding to the private
key which made the
signature. When the ECDSA
signature is checked, up to
four possible ECDSA public
keys will be reconstructed
from the signature; each key
will be hashed and compared
against the P2PKH address
provided to see if any of
them match. If there are no
matches, signature
validation will fail

2 signature String (base64)

Required
(exactly 1)

The signature created by the
signer encoded as base-64
[3.11]

3 Message String Required
(exactly 1)

The message exactly as it
was signed (e.g. no extra
whitespace)

Result
No.

Name Type Presence Description

1 result Bool/null Required
(exactly 1)

Set to true if the message
was signed by a key
corresponding to the

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

232 | P a g e

Note: Base58Check-encoding is a modified Base 58 encoding. There is a difference between these formats
[2.21]. Please be sure which encoding can be used in case “String (base58)” parameter type.

Usage and Examples:

Arguments:

1. “bitcoinaddress” (string, required) The bitcoin address to use for the signa

ture.

2. “signature” (string, required) The signature provided by the signer in

base 64 encoding (see signmessage).

3. “message” (string, required) The message that was signed.

Result:

true|false (232ubscri) If the signature is verified or not.

Examples:

> bitcoin-cli verifymessage “1D1ZrZNe3Juo7ZycKEYQQiQAWd9y54F4XZ” “signature” “my

 message”

As json rpc

> curl –user myusername –data-binary ‘{“jsonrpc”: “1.0”, “id”:”curltest”, “met

hod”: “verifymessage”, “params”: [“1D1ZrZNe3Juo7ZycKEYQQiQAWd9y54F4XZ”, “signatu

re”, “my message”] }’ –H ‘content-type: text/plain;’ http://127.0.0.1:8332/

provided P2PKH address; set
to false if it was not signed
by that key; set to JSON null
if an error occurred

http://127.0.0.1:8332/

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

233 | P a g e

Example from Bitcoin Core 0.10.0 testnet:

bitcoin-cli –testnet verifymessage \

 mgnucj8nYqdrPFh2JfZSB1NmUThUGnmsqe \

 IL98ziCmwYi5pL+dqKp4Ux+zCa4hP/xbjHmWh+Mk/lefV/0pWV1p/gQ94jgExSmgH2/+PDcCCrOHAady2IEySSI= \

 ‘Hello, World!’

Result:

true

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

234 | P a g e

validateaddress
returns information about the given bitcoin address.

Parameters:

Return:

Usage and Examples:

Arguments:

2. “bitcoinaddress” (string, required) The bitcoin address to validate

Param
No.

Name Type Presence Description

1 Address String (base58)

Required
(exactly 1)

The P2PKH address to
validate (in Base58Check
encoding).

Result
No.

Name Type Presence Description

1 result Object Required
(exactly 1)

Information about the
address

 • isvalid Bool Required
(exactly 1)

Set to true if address is valid;
false otherwise

 • address String
(base58)

Optional (0 or 1) If the address is valid, this is
the address

 • ismine Bool Optional (0 or 1) NA (wallet support required)

 • iswatchonly Bool Optional (0 or 1) NA (wallet support required)

 • isscript Bool Optional (0 or 1) NA (wallet support required)

 • script String Optional (0 or 1) NA (Only returned for P2SH
addresses)

 • hex String (hex) Optional (0 or 1) NA (Only returned for P2SH
addresses)

 • addresses array Optional (0 or 1) NA (Only returned for P2SH
addresses)

 - Address String Optional (0 or
more)

 • sigrequired Number (int) Optional (0 or 1) NA (Only returned for P2SH
addresses)

 • pubkey String (hex) Optional (0 or 1) NA (wallet support required)

 • iscompressed Bool Optional (0 or 1) NA (wallet support required)

 • account String Optional (0 or 1) NA (wallet support required)

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

235 | P a g e

Result:

 {

 “isvalid” : true|false, (235ubscri) If the address is valid or not. If n

ot, this is the only property returned.

 “address” : “bitcoinaddress”, (string) The bitcoin address validated

 “ismine” : true|false, (235ubscri) If the address is yours or not

 “isscript” : true|false, (235ubscri) If the key is a script

 “pubkey” : “publickeyhex”, (string) The hex value of the raw public key

 “iscompressed” : true|false, (235ubscri) If the address is compressed

 “account” : “account” (string) The account associated with the address

, “” is the default accountExamples:

> bitcoin-cli verifymessage “1D1ZrZNe3Juo7ZycKEYQQiQAWd9y54F4XZ” “signature” “my

 message”

}

As json rpc

> curl –user myusername –data-binary ‘{“jsonrpc”: “1.0”, “id”:”curltest”, “met

hod”: “validateaddress”, “params”: [“1PSSGeFHDnKNxiEyFrD1wcEaHr9hrQDDWc”] }’ –H

‘content-type: text/plain;’ http://127.0.0.1:8332/

Example from Bitcoin Core 0.10.0 testnet:

http://127.0.0.1:8332/

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

236 | P a g e

bitcoin-cli –testnet validateaddress mgnucj8nYqdrPFh2JfZSB1NmUThUGnmsqe

Result:

{

 “isvalid” : true,

 “address” : “mgnucj8nYqdrPFh2JfZSB1NmUThUGnmsqe”,

 “ismine” : false

}

5.7.3 Java Wrapper of Daemon Core RPC
Draft list of functions:

- validateBtcAddress [btcAddress (request param as String) -> response: isValid (1-true, 0-false)]

Under construction…

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

237 | P a g e

6. Digital Algorithms and Schemes
6.1 Mnemonic Code Generation Scheme
A mnemonic code or mnemonic sentence is a group of easy to remember words. This can be further used

for various purposes like generation of private keys for Type 1 deterministic wallets [Refer section 6.3.1].

The scheme described here is in accordance with BIP-0039 [2.17]. According to BIP-0039 the number of

words in a mnemonic sentence can range from 12 to 24 [Refer

Table 6.1.1]. Wordlist with 2048 pre-defined English words will be used for this implementation [2.18].

Note: We will be using wordlist for English initially. Support for other languages will be considered in later

phases.

Steps for mnemonic code generation:

The mnemonic code can be generated by a sequence of steps that include generation of entropy,

checksum and then finally the mnemonic code. Following steps describe the criteria that entropy,

checksum and mnemonic code need to satisfy. Each step describes the output expected for that particular

step.

1. Generate initial entropy InitENT of size 128-256 bits (could use a secure random number

generator for this part). Note that larger entropy leads to greater security, but it also leads to larger

sentence length.

Properties of entropy length ENT:

• should be multiple of 32

• minimum value = 128 bits

• maximum value = 256 bits

Output of this step will be a [ENT] bits random number.

2. Hash the initial entropy with SHA256. The output will be a string of 256 bits ENTHash.

ENTHash = SHA256(InitENT)

3. Generate checksum. Let’s denote checksum length as CS.

CS = ENT /32

Checksum = first [CS] bits of the hash ENTHash obtained in step 2.

Output of this step will be Checksum of [CS] bits size.

4. Derive final entropy by appending checksum to the end of initial entropy.

FinalEntropy = [InitENT] + [Checksum]

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

238 | P a g e

Output of this step will be entropy string FinalEntropy of [ENT + CS] bits size.

5. The final entropy bit string is divided into 11 bit long chunks. This will be give us output containing

N chunks of 11 bits each, where N = [ENT + CS]/11

6. Each chunk encodes a number from 0 to 2047 which is used as an index to the wordlist.

Let’s denote Mnemonic Sentence length as MS.

After indexing the wordlist (2048 pre-defined words), we will obtain [MS] number of words.

Properties of MS:

MS = (ENT + CS)/11

• should have minimum value of 12

• should be divisible by 3

Thus, the final output will be a set of [MS] number of words.

The following table describes the relation between the initial entropy length ENT, the checksum

length CS and the length of the generated mnemonic sentence MS in words.

CS = ENT / 32

MS = (ENT + CS) / 11

ENT CS ENT+CS MS

128 4 132 12

160 5 165 15

192 6 198 18

224 7 231 21

256 8 264 24

Table 6.1.1

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

239 | P a g e

6.2 Shamir’s Secret Sharing Scheme
Shamir’s secret sharing scheme (or 4S for short) is an algorithm that divides a secret into shares. Secret can

be recovered by combining certain numbers of shares.

4S will be used to split the mnemonic seed [6.1] into number of parts. It will also be used to regenerate the

mnemonic seed from certain number of parts.

6.2.1 Basic Terms

Secret (S): Secret is a secret number that you want to share with others securely.

Share: Share is a piece of secret. Secret is divided into pieces and each piece is called share. It is computed

from given secret. In order to recover the secret, you need to get certain numbers of shares.

Threshold (k): Threshold is the number of shares you need at least in order to recover your secret. You can

restore your secret only when you have more than or equal to the number of threshold.

Prime (p): A random prime number.

Basically, 4S is a method to give n people, each a part of a secret so that any k of the recipients (k<n) can

reveal the secret.

6.2.2 Split Secret into shares

Given a secret value S, the number of participants n, the threshold number k, and some prime number p,

we construct a polynomial:

 y = f(x) of degree k−1 (modulo our prime p)

with constant term S.

Next we choose n unique random integers between 1 and p−1, inclusive, and evaluate the polynomial at

those n points. Each of the n participants is given a (x, y) pair.

Steps in detail:

1. Convert into Integer

For 4S, the secret needs to be an integer. Hence if the secret is in some other format (ex. String, hex etc.)

convert it into integer first. Note that depending on the programming language chosen, there might be

inbuilt package / functions to achieve this.

For example, if the secret is a string, just convert the string into a byte array so that we can treat is as a

number. Steps:

i. Convert string to byte array

ii. Convert the byte array into integer

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

240 | P a g e

For ex, in Java this can be done as follows:

String mnm_seed = “abc def ghi jkl mno pqr”;
byte[] byteArray = mnm_seed.getBytes();
BigInteger S = new BigInteger(byteArray);

If the secret is an integer, skip this step.

For this example, let S = 1234.

2. Decide number of shares (n) and threshold (k)

Note that k parts will be required to regenerate the secret. Hence, chose s and k such that k parts can

always be obtained while recovering the secret.

For this example, let n = 6, k =3.

3. Create polynomial

We need to create a polynomial of the form: y = f(x) mod p

i. Determine constant term and degree of polynomial

f(x) = a0 + a1x + a2x2 +a3x3+…+ak-1xk-1

- The constant term a0 = S

- degree of polynomial = k-1

Hence for k = 3 and S = 1234, we need to build a polynomial with degree 2 and a0 = 1234

f(x) = 1234 + a1x + a2x2

ii. Determine coefficients

Chose k-1 random numbers (use a Random Number Generator) such that:

0 < an < S

Let a1 = 166; a2 =94

Hence, f(x) = 1234 + 166x + 94 x2

iii. Select a random prime number

Chose a random prime number (p) such that:

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

241 | P a g e

p > max(S,n)

Let p = 1613

iv. Final polynomial

y = f(x) mod p

y = (1234 + 166x + 94 x2) mod 1613

6.2.3 Create shares

To divide the secret into n shares, we need to construct n points (shares) using the polynomial:

y = (1234 + 166x + 94 x2) mod 1613

Since n = 6 for this example, we will have 6 points. Note that start with x = 1 and NOT x = 0.

For x = 1 to 6, the 6 points are as follows:

(1, 1494); (2,329); (3,965); (4,176); (5, 1188); (6,775)

Out of these n (6) points, any k (3) points can be used to regenerate the secret.

6.2.4 Reconstruct Secret from given number of shares

i. Get the secret integer

To reconstruct the secret, we need following information:

n = 6, k =3, p =1613,

k shares:

(x0, y0) = (1, 1494); (x1, y1) = (2,329); (x2, y2) = (3,965)

Once we have the above information, we can use Lagrange Interpolation [3.7]. This technique can rebuild

entire polynomial. The coefficients can be calculated according to formula below:

ai (x)= [Ʃk-1
i=0 yi Π 0<=j<=k-1, j≠i (x-xj)/(xi – xj)] mod p

but since S = a0, we only need to find a0 = a0 (0)

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

242 | P a g e

 a0 =

where xi – xj ≠ 0

Pseudo code for above equation:

a0 = 0

For i = 0 to k-1

 z = 1

 For j = 0 to k-1

 If j != i

 z = z * (-x[j])*(x[i]-x[j])-1

 End If

 End For

 a0 = a0 + (y[i] * z)

End For

a0 = a0mod p

We get a0 = 1234 after solving for above values.

Note: the exponent −1 signifies taking the multiplicative inverse. Most of the programming languages will

have inbuilt packages to perform mathematical operations such as multiplicative inverse.

ii. Convert integer to desired format

If Step 1 from 6.2.2 was executed to convert a specific format to integer, follow the reverse

procedure to convert the integer back to the desired format.

Ex. Integer to string

- Convert string to byte array

- Convert the byte array into integer

mod p [

]

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

243 | P a g e

 Example code in Java:

 BigInteger bigInt = BigInteger.valueOf(S);
 byte[] buffer = bigInt.toByteArray();
 String secretString = new String(buffer, StandardCharsets.UTF_8);

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

244 | P a g e

6.3 Elliptic Curve Digital Signature Algorithm in case Bitcoins
ECDSA (X9.62 standard digital signature scheme) [3.1], [3.2] implementation in the Btc protocol [2.13] uses

elliptic curve on over finite field Fp where p is a prime number greater than 3.

The elliptic curve E defined over Fp can be expressed by the Weierstra equation:

y2 = (x3+ax+b) mod p where a, b ϵ Fp and 4a2 + 27b2 ≠ 0. All the points satisfying the

equation together with the identity element O (point of infinity) form group. Different curves will have

different domain parameters to form different elliptic curve groups.

The Domain Parameters on the curve over Fp are a sextuple, expressed as T = {p, a, b, G, n, h},
where

the integer p specifying the finite field Fp, p is prime modulo [3.8], [3.9]

a, b are constants defining the equation,

G is the base point on the curve, of order n

n is G’s order, a sufficiently large prime number (at least 160 bits), and integer h is its the cofactor.

Btc protocol [2.13] uses 256-bit elliptic curve (Koblitz curve), where

curve name ID is secp256k1

curve equation:

(f.3.1) y2 = (x3+7) mod p, where a=0, b=7

domain parameters associated with curve in the Hex representation:

p = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE

 FFFFFC2F
= 2256 – 232 – 29 – 28 – 27 – 26 – 24 – 1

a = 00000000 00000000 00000000 00000000 00000000 00000000 00000000

 00000000

b = 00000000 00000000 00000000 00000000 00000000 00000000 00000000

 00000007
G in compressed form

G = 02 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9

 59F2815B 16F81798
where

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

245 | P a g e

Gx = 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798

Gy is even and can be calculated from the equation (f.3.1)

G in uncompressed form

G = 04 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9

 59F2815B 16F81798 483ADA77 26A3C465 5DA4FBFC 0E1108A8 FD17B448
 A6855419 9C47D08F FB10D4B8
where

Gx = 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798

Gy = 483ADA77 26A3C465 5DA4FBFC 0E1108A8 FD17B448 A6855419 9C47D08F FB10D4B8

n = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B BFD25E8C

 D0364141

h= 01

There are three main processes in Btc system based on ECDSA:

1. Private/Public Key Generation

2. Trx (Message) Signature/Encryption

3. Signature Verification/Decryption

6.3.1 Points operations:

Given two points P(x1, y1) and Q(x2, y2) (with Affine coordinates [3.10]) on the curve.

Point Addition

Point Addition is defined as the reflection through the x-axis of the third intersecting point R’ on a line

that includes P and Q (Pic. 6.3.1). P ≠ Q

R(x3, y3) = P(x1, y1) + Q(x2, y2)

(f.6.3.1) x3 = (λ2 – (x1 + x2)) mod p
y3 = (λ (x1 – x3) – y1) mod p

where λ= (y2 – y1/x2 – x1) mod p

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

246 | P a g e

Pic. 6.3.1

Point Doubling

Point Doubling is defined by finding the line tangent to the point to be doubled, P, and taking reflection

through the x-axis of the intersecting point R’ on the curve to get R (Pic. 6.3.2).

R(x3, y3) = 2P = P(x1, y1) + P(x1, y1)

(f.6.3.2) x3 = (λ2 – 2x1) mod p

 y3 = (λ (x1 – x3) – y1) mod p

where λ= ((3x1
2 + a)/2y1) mod p

for secp256k1 curve (see f.3.1):

(f.6.3.2’) λ= (3x1
2/2y1) mod p

Pic. 6.3.2

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

247 | P a g e

Point Multiplication

Scalar Point Multiplication is repeated Point Additions and Point Doubling operations.

R(x3, y3) = a P(x1, y1)

where Scalar Point Multiplication defined by adding the point P to itself a times. For example:

R = 7P

R = P + (P + (P + (P + (P + (P + P)))))

The process of scalar multiplication is normally simplified by using a combination of Point Addition and

Point Doubling operations.

R = 7P

R = P + 6P

R = P + 2 (3P)

R = P + 2 (P + 2P)

Here, 7P has been broken down into two Point Doubling steps and two Point Addition steps.

Unified Formula for Point’s Addition and Doubling [4.3], [4.4]:

Given two points (x1, y1) and (x2, y2) on the curve using parameters secp256k1, whether they are

equal or not, both point addition and doubling can be calculated as follows:

 x3 = λ2 – (x1 + x2)
y3 = λ (x1 – x3) – y1

where

(f.6.3.3) λ = ((x1 + x2) 2 – x1x2 + a)/(y1 + y2)
y1+y2 ≠ 0 (it is not applicable to all point additions)

for secp256k1 curve (see f.3.1)

(f.6.3.3’) λ = ((x1 + x2) 2 – x1x2)/(y1 + y2)

Most efficient and secure Unified Formula [4.1], [4.2]:

(f.6.3.4) λ =[(x1 + x2) 2 – x1x2 + a + (-1)ᵟ(y1 – y2)]/[y1 + y2 + (-1)ᵟ(x1 – x2)]

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

248 | P a g e

y1 + y2 + (-1)ᵟ(x1 – x2) ≠ 0

where

δ = 0 when y1 + y2 + x1 – x2 ≠ 0 and δ = 1 otherwise
or a randomized choice of δ when both choices give nonzero values.

For secp256k1 curve (see f.3.1)

(f.6.3.4’) λ =[(x1 + x2) 2 – x1x2 + (-1)ᵟ(y1 – y2)]/[y1 + y2 + (-1)ᵟ(x1 – x2)]

Therefore (f.6.3.5)

λ = [(x1 + x2) 2 – x1x2 + (y1 – y2)]/[(y1 + y2) + (x1 – x2)] when x2 ≠ x1 + (y1 + y2)

λ = [(x1 + x2) 2 – x1x2 + (y2 – y1)]/[(y1 + y2) + (x2 – x1)] otherwise

Note: 1. If any fixed λ is used, then it may be that the attack can still be applied.

2. All formulas given above uses Affine coordinates.

3. “mod p” operations are omitted in both types of the Unified Formula. There is small risk of errors derived

from improper modular usage. Firstly, developer should try Unified Formula with “mod p” operations if errors

is received in the implementation stage. Secondly, developer can come back to general ECDSA implementation

with Points Doubling and Points Additions formulas instead of Unified Formula if errors is still received.

Simultaneous Elliptic Scalar Multiplication

Simultaneous Elliptic Scalar Multiplication is a method to calculate curve point C = k G + l Q

Note that using modification of Shamir’s Trick (also known as Straus’s algorithm) [4.5], a sum of two scalar
multiplications can be calculated faster than two scalar multiplications done independently. Using a

Straus’s algorithm [4.6] to process k G + l Q in parallel can reduce the number of operations needed.

The algorithm uses a 2NAF (see Glossary) representation of integers k and l.

2NAF conversion algorithm:

Input: d - m-bit integer

Output: 2NAF(d) where

d = 2m-1dm-1 + 2m-2dm-2 + … + 22d2 + 11d1 + 20d0, [d0, dm] ϵ {0,-1, 1}

Pseudo Code:

i = 0

While (d > 0) do

 If (d mod 2) == 1

https://en.wikipedia.org/w/index.php?title=Straus%27s_algorithm&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Straus%27s_algorithm&action=edit&redlink=1

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

249 | P a g e

 di = d mods 4

 d = d – di

 Else

 di = 0

 End if

d = d/2

i = i + 1

End while

Return (di−1 , di−2., …, d0)

Where “mods” Pseudo Code:

If (d mod 4) >= 2

 Return (d mod 4) – 4

Else

 Return (d mod 4)

End if

Example:

d = 7

23d3 + 22d2 + 21d1 + 20d0 = 23x1 + 22x0 + 21x0 + 20x(-1) = 8 + 0 + 0 -1 = 7

2NAF(d) = 1 0 0 -1

Straus’ Algorithm:

Input: two points G(x1, y1) and Q(x2, y2) on the curve.

m-bit integers k and l
Output: Curve point C(x3, y3) = k G + l Q

Precomputations:

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

250 | P a g e

1. Compute xG + yQ where any x, y ϵ {0, -1, 1}

2. Compute 2NAF(k) and 2NAF(l)

Pseudo Code:

 C = ∞ // Point at infinity

For i = m-1 to 0

 C = 2C // using Point Doubling formula (f.6.3.2, f.6.3.2’)

 C = C + (ki G + li Q) // using precomputations

 End For

 Return C

Example:

Computing: C = k G + l Q where k = 13, l = 7

Precomputations:

1. Compute (G + Q), (G – Q)

2. Compute

2NAF(k) = 10-101 [24x1 + 23x0 + 22x(-1) + 21x0 + 20x1 = 16 + 0 -4 + 0 + 1 = 13]
where mk=4

2NAF(l) = 100-1 [23x1 + 22x0 + 21x0 + 20x(-1) = 8 + 0 + 0 -1 = 7]

where ml=3

add (mk- ml) zeros in the beginning of 2NAF(l), because mk > ml => 2NAF(l) = 0100-1

Code start:
C = ∞

i = 4:
 C = 2C = ∞

 C = ∞ + G = G

i = 3:

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

251 | P a g e

 C = 2G
 C = 2G + Q
i = 2:
 C = 2(2G + Q) = 4G + 2Q
 C = 4G + 2Q – G = 3G + 2Q
i = 1:
 C = 2(3G + 2Q) = 6G + 4Q
 C = 6G + 4Q + ∞ = 6G + 4Q
i = 0:
 C = 2(6G + 4Q) = 12G + 8Q
 C = 12G + 8Q + (G – Q) = 13G + 7Q

6.3.2 Private/Public Key Generation

Private Key (PrvKey): a random 256-bit integer d in the range of [1, n – 1].
N=1.156*1077 , n is slightly less than 2256

Note: The visible universe is estimated to contain 1080 atoms. ☺

IntDS will use “type 1 deterministic wallet” approach to generate private key.

Steps to produce Private Key:

1. To generate a private key take SHA256(string + i),

where

i – ASCII-coded number that starts from 1 and increments as additional keys are needed.

Note: i will be equal a consecutive incremental number which is captured in “trx_management” DB

(SYSTEM_BTC_ADDRESSES table, SEQUENCE_NUMBER field) in case Single-sig Transaction Management
SubSystem.

String – Mnemonic code. Mnemonic code are English word sequence of 12 to 24 words. It is important

that mnemonic code string should not have spaces between words. The way to generate mnemonic code is
described in the Paragraph 6.1.

Output of this step will be HashedSeed which is 256 binary digits shown as 64 hexadecimal digits, each

4 bits.

2. Convert HashedSeed in hexadecimal representation to big integer in decimal representation.

Output of this step will be Private Key d.

3. Check the result d < n – 1.
Note: Private Key in a script should be Base58Check encoding string with the prefix used when encoding a
private key is 128 (0x80 in hex)

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

252 | P a g e

Public Key (PubKey): Q = dG where Q is point on the curve, G is the base point on the curve, of order n

A Private Key can be converted into a Public Key, but a Public Key cannot be converted back into a Private

Key because the math only works one way and extremely difficult to determine what d was.

The Public Key is derived from the Private Key by Scalar Point Multiplication of the base point G a number

of times equal to the value of the Private Key d.

Note: EC Point multiplication is core operation in the ECDSA theory. The straightforward way of computing
a point multiplication is through repeated addition. There are algorithms to make multiplication more
efficient than repeated addition:

- Double-and-add
- Double-and-add-always
- Windowed method
- Sliding-window method
- wNAF method
- Montgomery ladder (implemented in OpenSSL, good performance, low security)

etc.
There are two important criteria for iDaemon System: performance and security.
Each algorithm should be reviewed to make a right choice. Currently system implements simplest method
“Double-and-add” approach which is algorithm with low security. “Double-and-add” algorithm is
vulnerable to Side Channel Attacks as:
- Fault Analysis attacks
- Power Consumption attacks (SPA and DPA)
- Timing attacks
The solutions to protect IntDS from Side Channel Attacks should be considered later. Not in this stage of
project implementation!

Steps to produce Public Key from Private Key:

1. Convert the Private Key d from decimal to binary representation (see Appendix H).

For example d is:

105 in decimal representation, which is 1101001 in binary

25 in decimal representation, which is 11001 in binary

2. The binary number is a sequence of digits. Gets reversed sequence of digits:

for 1101001 reversed sequence is 1001011

for 11001 reversed sequence is 10011

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

253 | P a g e

3. Represents each digit place as powers of 2 in the reversed sequence.

For 1101001 For 11001

1 20 = 1 1 20 = 1

0 21 = 2 0 21 = 2

0 22 = 4 0 22 = 4

1 23 = 8 1 23 = 8
0 24 = 16 1 24 = 16
1 25 =32

1 26 =64

4. Private Key can be represented as sum of points which have a ‘1’:

105 = 1 + 8 + 32 + 64

25 = 1 + 8 + 16

5. Public Key Q calculation can be simplified by using combinations of Point Doubling and Point

Addition operations instead of Scalar Point Multiplication defined by adding the point G to itself d

times. Number of total operations will be decreased as:

totally 9 operations = 6 Point Doubling and 3 Point Addition operations for 105*G

105*G = 1*G + 8*G + 32*G + 64*G

totally 6 operations = 4 Point Doubling and 2 Point Addition operations for 25 *G

25*G = 1*G + 8*G + 16*G

where

2*G = Point Doubling (G)

4*G = Point Doubling (2*G)

8*G = Point Doubling (4*G)

16*G = Point Doubling (8*G)

etc.

6. Use “Double-and-add” algorithm to calculate Public key Q = dG

The formula for pseudo code is using reversed sequence of digits:

d = 20d0 + 21d1 + 22d2 + … + 2mdm, [d0, dm] ϵ {0,1}

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

254 | P a g e

where d is Private Key in decimal representation

Pseudo Code:

 Q = 0 // Point at infinity

 For i = 0 to m

 If di = 1

 Q = Q + G // using Unified formula (f.6.3.5) instead of Point Addition formula (f.6.3.1)

 End if

 G = 2G // using Unified formula (f.6.3.5) instead of Point Doubling formula (f.6.3.2, f.6.3.2’)

 End For

 Return Q

7. Final stage: Checking if PubKey point (Q = dG) is on curve.

Q (x, y) => y2 = (x3+7) mod p

Note: System is using Java (J2SE) BigInteger implementation of Modular arithmetic and Arithmetic
primitives. To do so: Domain parameters should be converted from Hexadecimal to BiInteger
representation before Unified formula is used

Pseudo Code for Efficient Unified Formula (f.6.3.5)

Defined: P(x1, y1) and P(x2, y2)

addY12 = y1 + y2

addX12 = x1 + x2

multiplyX12 = x1 * x2

subtractX12 = x1 – x2

subtractY12 = y1 – y2

If (addY12 – subtractX12) = 0

 subtractX12 = negate(subtractX12) // - (x1-x2) = x2-x1

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

255 | P a g e

 subtractY12 = negate(subtractY12) // - (y1-y2) = y2-y1

End if

Divisor = addY12 + subtractX12

Lambda = addX12^2 – multiplyX12 + subtractY12

Lambda = Lambda * Divisor ^ (-1)

x3 = Lambda^2 – addX12

subtractX13 = x1 – x3

y3 = (Lambda* subtractX13 – y1)

Return P(x3, y3)

Pseudo Code for Points Additions (f.6.3.1)

Defined: P(x1, y1), P(x2, y2), POINT_INFINITY

If P(x1, y1) equal POINT_INFINITY or P(x2, y2) equal POINT_INFINITY

 Return POINT_INFINITY

End if

subtractX12 = x2 –x1

subtractY12 = y2 – y1

modInverse = subtractX12^ (-1) mod p

Lambda = subtractY12 * modInverse

Lambda = Lambda mod p

addX12 = x1 + x2

x3 = (Lambda^2 – addX12) mod p

subtractX13 = x1 – x3

y3 = (Lambda* subtractX13 – y1) mod p

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

256 | P a g e

Return P(x3, y3)

Pseudo Code for Points Doubling (f.6.3.2, f.6.3.2’)

Defined: P(x1, y1)

modInverse = (2*y1)^(-1) mod p

Lambda = 3*x1^2* modInverse

Lambda = Lambda mod p

x3 = (Lambda^2 – 2*x1) mod p

subtractX13 = x1 – x3

y3 = (Lambda* subtractX13 – y1) mod p

Return P(x3, y3)

Note: The results of all operations in the formulas must always be an integer

There are two forms of Public Key in scripts:

Public Key should be presented in hexadecimal format

1. Uncompressed PubKey (old version) – are given as 04[x][y], 65 bytes, consisting of constant

prefix 0x04, followed by two 256-bit integers x and y (2 * 32 bytes), where x and y are 32 byte

big-endian integers (as byte array) representing the Affine coordinates of Q point on the curve

2. Compressed PubKey – are given as [sign][x], 33 bytes, where [sign] is 0x02 if y is even and

0x03 if y is odd, 256-bit integer x , where x is 32 byte big-endian integer (as byte array)

representing x Affine coordinate of a Q point on the curve.

6.3.3 Transaction (Message) Signature Generation

Given a message m (Btc transaction Input) as a string in hexadecimal representation to be signed, the

private key d and G , where G is the base point on the curve, of order n

1. Choose a cryptographically secure random integer k ϵ [1, n – 1]. It is important that k not be

repeated in different signatures and that it not be guessable by a third party.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

257 | P a g e

2. Compute the curve point R(x1, y1) = kG using Scalar Point Multiplication (see “Points operations:”

6.3.1), where x1 and y1 are Affine coordinates of point R

3. Convert x1 into integer and calculate r = x1 mod n. (Return to step 1 if r = 0)

4. Calculate e = HASH(m), where HASH is a cryptographic hash function, such as SHA1. Output of

this step will be byte array in big-endian byte-order with length Larray

Note: The resulting sequence q is converted to an integer value using the big-endian convention: if input

bits are called b_0 (leftmost) to b_(qLen-1) (rightmost), then the resulting value is

b_0 * 2(qLen-1) + b_1 * 2(qLen-2) + … + b_(qLen-1) * 20

where qLen is the binary length of q

5. Let’s denote z as Ln leftmost bits of e , where Ln is the bit length of the group order n. To do so:

 5.1 Calculate the Le bit length of e as integer Le = Larray * 8 (1 byte = 8 bit)

 5.2 Convert n from hexadecimal representation to big integer in decimal representation.

5.3 Calculate Ln bit length of n
5.4 Convert e to big integer in decimal representation.

5.4 Make an integer z as “right shift” of e by (Le – Ln) bits if Ln < Le

Note: 1. Z can be greater than n but not longer.

2. “right shift” is equivalent to operation when the resulting integer is divided by 2(Le – Ln) (Euclidian

division: the remainder is discarded)

6. Compute s = k−1(z + dr) mod n (Return to step 1 if s = 0). Do not forget to use “modInverse”

operation in s calculation.

7. Signature is (r, s) pair of 256-bit numbers.

Note: 1. How a signature is to be encoded is not covered by the ECDSA standards themselves. A common
way is to use a SEQUENCE of two INTEGERs, for r and s, in that order.
2. There is a Deterministic [3.5] approach to select random k, which is more secure. Deterministic means,
instead of selecting a random scalar k in signing process, k is fixed with the same message and private key
during signature generation but it is indistinguishable with random generated ones. The generation of k
uses the hash of the message HASH(m) and private key as input to a deterministic pseudorandom number
generator HMAC-DRBG, and output of the generation is used to yield k.
3. iDaemon system uses RNG hardware instead of Deterministic approach to enforce security.

DER-encoding of signature par (r, s) in the script

Given r, s pair of 256-bit numbers (unsigned binary big integers) and sighash. DER encoded signature
sig can be calculated according to formula below:

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

258 | P a g e

[sig] = [len_sig] [sequence = 0x30] [len_rs] [integer = 0x02] [len_r] [r_value]
[integer = 0x02] [len_s][s_value][sighash]

All elements are 1 byte except r & s which will be 32 or 33 bytes.

Where:

r_value – unsigned binary int, big-endian.

Note: some sources converts r into a little endian (see Appendix G) byte array. If the leading bit is not zero

then prepend a zero value byte.

S_value – unsigned binary int, big-endian.

Note: some sources converts s into a little endian (see Appendix G) byte array. If the leading bit is not zero

then prepend a zero value byte.
Note: the highest bit to be zero, if it isn’t an extra zero byte is added.

Len_r – number of bytes for r (always 20 or 21)

len_s – number of bytes for s (always 20 or 21)

sequence – always 0x30, ASN.1 tag identifier (20h = constructed + 10h = SEQUENCE and SEQUENCE OF)

integer – always 0x02, ASN.1 tag identifier

len_rs = len_r + len_s + 2 (two extra bytes for the two integer bytes)

len_sig = len_rs + 3 (three extra bytes for the len_rs byte, the sequence byte and the sighash

byte)

sighash – A flag to Bitcoin signatures that indicates what parts of the transaction the signature signs. The

unsigned parts of the transaction may be modified. Sighash Type codes see in Appendix K.

Note: r & s usually are 32 or 33 bytes. But can be smaller.

- If highest bit of 256-bit integer is set system has 33 bytes (probability is 1/2)
- If highest byte is greater than 0 and smaller than 128 system has 32 bytes (probability 127/256)
- If highest byte is 0 – system should take R as 248-bit integer and repeat these steps

IntDS will use SIGHASH_ALL sighash for normal single signature transactions.

The signature [sig] is a first part of scriptSig.

6.3.4 Signature Verification

Given the signature pair (r, s) on message m (Btc transaction), public key Q, elliptic curve E, base point

G, and G’s order n

1. Check that integers r, s ϵ [1, n – 1]. If not, the signature is invalid.

2. Calculate e = HASH(m), where HASH is the same function used in the signature generation, such as

SHA1.
3. Let’s denote z as Ln leftmost bits of e , where Ln is the bit length of the group order n. (see step 5 in

point 6.3.3)

https://bitcoin.org/en/glossary/signature
https://bitcoin.org/en/glossary/signature
https://bitcoin.org/en/glossary/sighash-all

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

259 | P a g e

2. Compute w = s−1 mod n. Do not forget to use “modInverse” operation in w calculation.

3. Compute u1 = zw mod n

u2 = rw mod n.

4. Calculate the curve point C(x1, y1) = u1 G + u2 Q, sing Simultaneous Elliptic Scalar Multiplication

(see “Points operations:” 6.3.1)

5. Convert x1 into integer and calculate v = x1 mod n.

6. Compare v and r, accept the signature only if v = r.

Note: Signature verification will be done in the last step of P2PKH Script implementation.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

260 | P a g e

7. Ways to Create Bitcoin Address
Bitcoin address is an identifier of 26-35 alphanumeric characters [2.15].

7.1 Single signature Btc Address
In summary, Btc address is the double hash of the public key for internal representation. The Btc address is

represented externally in ASCII using Base58Check encoding and can be shared with others.

The algorithms used to make a Btc address from a public key are the Secure Hash Algorithm (SHA) and the

RACE Integrity Primitives Evaluation Message Digest (RIPEMD), specifically SHA256 and RIPEMD160.

To create a Btc address, public key PubKey is a mandatory input. Bitcoin originally only used

uncompressed keys, but since v0.6 compressed are now used. Btc address is a prefix byte of 0x00, the

RIPEMD160(SHA256(PubKey)) hash and then a checksum postfix.

The checksum checksum is the first 4 bytes of the

checksum = SHA256(SHA256(0x00 <RIPEMD160(SHA256(PubKey))>))

The full byte string of Btc Address is

0x00 <RIPEMD160(SHA256(PubKey))> <checksum>

which is then encoded using Base58:

BtcAddress = Base58(0x00 <RIPEMD160(SHA256(PubKey))> <checksum>)

Steps involved in creating a version 1 single signature Btc address are as follows:

1. Double hash the public key

Starting with the public key PubKey, we compute the SHA256 hash and then compute the RIPEMD160

hash of the result, producing a 160-bit (20-byte) number:

dbleHash = RIPEMD160(SHA256(PubKey))

where PubKey is the public key in hexadecimal representation (see point 6.3.2)

Example:

Assume Uncompressed Public key PubKey =

0450863AD64A87AE8A2FE83C1AF1A8403CB53F53E486D8511DAD8A04887E5B23522CD470243453A2

99FA9E77237716103ABC11A1DF38855ED6F2EE187E9C582BA6

SHA256 (PubKey) = 600FFE422B4E00731A59557A5CCA46CC183944191006324A447BDB2D98D4B408

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

261 | P a g e

RIPEMD160 hashing of the result of SHA256 gives:

dbleHash = 010966776006953D5567439E5E39F86A0D273BEE

2. Base58Check encoding

A modified Base58 binary-to-text encoding known as Base58Check is used for encoding Bitcoin

addresses.

Base58Check is a Base58 encoding format, which has a built-in error-checking code i.e. the checksum.

The checksum is an additional four bytes added to the end of the data that is being encoded.

Following are the detailed steps for Base58Check encoding:

i. Append version byte

Add a prefix called “version byte” in front of output from step 1. Version byte identifies the type of

data that is encoded. In case of a bitcoin address the prefix is zero (0x00 in hex). Refer Appendix J for

commonly used prefixes.

Appending version byte in front of output from Step 1 gives us:

beforeChkSum = version byte (+) dbleHash

Example:

beforeChkSum = 00 (+) 010966776006953D5567439E5E39F86A0D273BEE

beforeChkSum = 00010966776006953D5567439E5E39F86A0D273BEE

ii. Double hash the extended result with version byte

Perform SHA256 hash twice on the result from above step.

chksumHash = SHA256(SHA256 (beforeChkSum))

Example:

chksumHash = SHA256(SHA256(00010966776006953D5567439E5E39F86A0D273BEE))

chksumHash = D61967F63C7DD183914A4AE452C9F6AD5D462CE3D277798075B107615C1A8A30

iii. Get the checksum

Take the first four bytes from the above output. This is the checksum.

Checksum = first four bytes of chksumHash

Example:

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

262 | P a g e

checksum = D61967F6

iv. Get the final result

Append the checksum at the end of output from step i.

result = beforeChkSum (+) checksum

Example:

result = 00010966776006953D5567439E5E39F86A0D273BEE (+) D61967F6

result = 00010966776006953D5567439E5E39F86A0D273BEED61967F6

v. Get the Btc address

Base58 encode the above result from a byte string into Base58 string to get the Bitcoin address

btcAddress = Base58(result)

Example:

btcAddress = Base58(00010966776006953D5567439E5E39F86A0D273BEED61967F6)

btcAddress = 16UwLL9Risc3QfPqBUvKofHmBQ7wMtjvM

7.2 Multi signature Btc Address
This point can be done in the scope of future development. Will need some researching activity.

Base58Check encoding [3.3]

Pay-to-script-hash (P2SH): payload is RIPEMD160(SHA256(redeemScript the wallet knows how to spend)); version

0x05 (these addresses begin with the digit ‘3’)

https://en.bitcoin.it/wiki/RIPEMD160
https://en.bitcoin.it/w/index.php?title=SHA256&action=edit&redlink=1

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

263 | P a g e

8. Stack-Based Btc Scripting Language
There are a small programs inside each transaction which should be executed to decide if transaction is
valid. This program is written in Stack-Based Btc Scripting Languge (Script). IntDS should verify and
implement Scripts to produce valid transactions. Valid transaction is valid if other systems in the Btc
network will also verify and accept it.
The Stack-Based Btc Scripting Languge is stateless, in that there is no state prior to execution of the Script,

or state saved after execution of the Script. Therefore, all the information needed to execute a Script is

contained within the script. Btc Scripting Language is called a Stack-Based language because it uses a data

structure called a stack.

A stack allows two operations: Push and Pop. Push adds an item on top of the stack. Pop removes the top

item from the stack. The Script language has approximately 80 different Opcodes (see Appendix D). It

includes arithmetic, bitwise operations, string operations, conditionals, stack manipulation and etc.

This paragraph will describe some standard types of transaction Scripts.

A Locking Script (scriptPubKey) and an Unlocking Script (scriptSig) are two types of scripts to validate
transactions. A Locking Script is an encumbrance placed on an Output, and it specifies the conditions that
must be met to spend the Output in the future. An Unlocking Script is a script that “solves”, or satisfies, the
conditions placed on an Output by a Locking Script and allows the Output to be spent. Unlocking Script are
part of every transaction Input and most of the time they contain a digital signature produced from their
private key.
IntDS will validate transactions by executing the Locking and Unlocking scripts together. For each input in
the transaction, the validation functionality will first retrieve the UTXO referenced by the Input. That UTXO
contains a Locking Script defining the conditions required to spend it. The system will then take the
Unlocking Script contained in the input that is attempting to spend this UTXO and execute the two Scripts.

8.1 Script for Pay to Public Key Hash (P2PKH) Transaction
An Unlock Script (scriptSig) is provided by IntDS to resolve encumbrance. A Lock Script (scriptPubKey) is
found in a Trx Output and is the encumbrance that must be fulfilled to spend the Output. The two scripts
together would form the Combined Validation Script:

[scriptSig] [scriptPubKey]

The result will be TRUE if Unlock Script has a valid signature from Private Key which corresponds to Public
Key and Public Key corresponds to Btc Address from Lock Script.

8.1.1 “scriptSig” structure in case P2PKH

scriptSig formula: scriptSig = PUSHDATA [sig] PUSHDATA [pubKey]

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

264 | P a g e

where:

[sig] = [signature][sighash]
PUSHDATA is the next byte contains the number of bytes to be pushed onto the stack.

The signature is encoded with DER (see point 6.3.3). Public key is represented as plain bytes (see point
6.3.2). Table below describes the example of scriptSig on the byte-level for one Input:

Signature Length in hex PUSHDATA 48 48 (4816 = 4x161+ 8x160 = 72 bytes)

[signature]
(DER [1.15])

sequence = 0x30 30

length rs 45

integer = 0x02 02

length r 20

r value 26 33 25 fc bd 57 9f 5a 3d 0c 49 aa 96 53 8d 95 62
ee 41 dc 69 0d 50 dc c5 a0 af 4b a2 b9 ef cf

integer = 0x02 02

length s 21

s value 00 fd 8d 53 c6 be 9b 3f 68 c7 4e ed 55 9c ca 31 4e
71 8d f4 37 b5 c5 c5 76 68 c5 93 0e 14 14 05 02

[sighash] SIGHASH_ALL 01

Public Key length in hex: PUSHDATA 41 41 (4116 = 4x161+ 1x160 = 65 bytes)

Public Key [pubKey] type = 0x04 for
uncompressed key
type = 0x02 if Y is even
and 0x03 if Y is odd for
compressed key

04

X 14 e3 01 b2 32 8f 17 44 2c 0b 83 10 d7 87 bf 3d 40
4c fb d0 70 4f 13 5b 6a d4 b2 d3 ee 75 13

Y 10 f9 81 92 6e 53 a6 e8 c3 9b d7 d3 fe fd 57 6c 54
3c ce 49 3c ba c0 63 88 f2 65 1d 1a ac bf cd

8.1.2 “scriptPubKey” structure in case P2PKH
scriptPubKey formula:

scriptPubKey = OP_DUP OP_HASH160 PUSHDATA [pubKeyHash]
OP_EQUALVERIFY OP_CHECKSIG

where:

[pubKeyHash] = RIPEMD160(SHA256(PubKey)) is a part of Btc address (see point 7.1)

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

265 | P a g e

PUSHDATA is the next byte contains the number of bytes to be pushed onto the stack.

OP_DUP, OP_HASH160, OP_EQUALVERIFY, OP_CHECKSIG are Opcodes. Opcodes values

can be found in Appendix D.
Table below describes the example of scriptPubKey on the byte-level for one Output.
In this example, Btc address is 1KKKK6N21Xko48zWKuQKXdvSsCf95ibHFa

OP_DUP 0x76 76

OP_HASH160 0xa9 a9

[pubKeyHash] length in
hex

PUSHDATA 14 14 (1416 = 1x161+ 4x160 = 20 bytes)

[pubKeyHash] 20 byte c8 e9 09 96 c7 c6 08 0e e0 62 84 60 0c 68 4e d9 04 d1 4c 5c

OP_EQUALVERIFY 0x88 88

OP_CHECKSIG 0xac ac

Steps to make scriptPubKey from given Btc address:
1. Decode the base58 encoding (similar to Base64). You should have 25 bytes.
2. Check that the 1st byte is 0x00 (the version byte of Bitcoin)
3. Check that the last 4 bytes are a correct checksum of the rest. (Or, “take the first 4 bytes of a double-

SHA256 of the first 21 bytes of the decoded data.”)
4. Take the middle 20 bytes and insert it into the following scriptPubKey.

OP_DUP OP_HASH160 <x> OP_EQUALVERIFY OP_CHECKSIG

8.1.3 Execution Steps of Combined Validation Script in case P2PKH
Combined Validation Script formula:

PUSHDATA [sig] PUSHDATA [pubKey] OP_DUP OP_HASH160 PUSHDATA

[pubKeyHash] OP_EQUALVERIFY OP_CHECKSIG

where [pubKeyHash] is Btc Address from Output of previous Trx which should be spent in current Trx.

Script Execution Steps:

Step Stack Script Execution Pointer

1 [sig] PUSHDATA [sig] PUSHDATA
[pubKey] OP_DUP OP_HASH160
PUSHDATA [pubKeyHash]
OP_EQUALVERIFY OP_CHECKSIG

Execution starts.
PUSHDATA pushes the value [sig]
to the top of the stack

2 [pubKey]
[sig]

PUSHDATA [sig] PUSHDATA
[pubKey] OP_DUP OP_HASH160
PUSHDATA [pubKeyHash]
OP_EQUALVERIFY OP_CHECKSIG

Script execution moving to the
right with each step. PUSHDATA
pushes the value [pubKey] to the
top of the stack, on top of [sig]

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

266 | P a g e

3 [pubKey]
[pubKey]
[sig]

PUSHDATA [sig] PUSHDATA [pubKey]
OP_DUP OP_HASH160 PUSHDATA
[pubKeyHash] OP_EQUALVERIFY
OP_CHECKSIG

OP_DUP operator duplicates the
top item in the stack, the
resulting value is pushed to the
top of the stack

4 [pubKeyHash]
[pubKey]
[sig]

PUSHDATA [sig] PUSHDATA [pubKey]
OP_DUP OP_HASH160 PUSHDATA
[pubKeyHash] OP_EQUALVERIFY
OP_CHECKSIG

OP_HASH160 operator hashed
the top item in the stack with
RIPEMD160(SHA256(pubKey)),
the resulting value [pubKeyHash]
is pushed to the top of the stack.

5 [pubKeyHash]
[pubKeyHash]
[pubKey]
[sig]

PUSHDATA [sig] PUSHDATA [pubKey]
OP_DUP OP_HASH160 PUSHDATA
[pubKeyHash] OP_EQUALVERIFY
OP_CHECKSIG

PUSHDATA pushes the value
[pubKeyHash] from the script on
top of the value [pubKeyHash]
calculated previously from
OP_HASH160 of the [pubKey]

6a [pubKey]
[sig]

PUSHDATA [sig] PUSHDATA [pubKey]
OP_DUP OP_HASH160 PUSHDATA
[pubKeyHash] OP_EQUALVERIFY
OP_CHECKSIG

OP_EQUALVERIFY operator
compares the [pubKeyHash]
encumbering the transaction with
[pubKeyHash] calculated from the
user’s [pubKey]. This proves that
Public Key is valid. Both are
removed and execution continues
in step 7a if they match, if not
match go to step 6b.

6b FALSE
[pubKey]
[sig]

PUSHDATA [sig] PUSHDATA [pubKey]
OP_DUP OP_HASH160 PUSHDATA
[pubKeyHash] OP_EQUALVERIFY
OP_CHECKSIG

Pushes FALSE to the top of the
stack. Execution stops.

7a TRUE PUSHDATA [sig] PUSHDATA [pubKey]
OP_DUP OP_HASH160 PUSHDATA
[pubKeyHash] OP_EQUALVERIFY
OP_CHECKSIG

OP_CHECKSIG operator checks
that the signature [sig] matches
the [pubKey] and pushes TRUE to
the top of the stack if true. This
proves that the signature is valid.
Execution stops.
Go to step 7b if false.

7b FALSE PUSHDATA [sig] PUSHDATA [pubKey]
OP_DUP OP_HASH160 PUSHDATA
[pubKeyHash] OP_EQUALVERIFY
OP_CHECKSIG

Pushes FALSE to the top of the
stack. Execution stops.

8.2 Pay to Public Key (P2PK)
This point can be done in the scope of future development. Will need some researching activity.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

267 | P a g e

8.3 Multi-Signature Transaction Script
The general form of a Locking Script (scriptPubKey or redeemScript) setting an M-of-N multi-signature

condition is:

M <Public Key 1> <Public Key 2> ... <Public Key N> N OP_CHECKMULTISIG

where N is the total number of listed public keys and M is the threshold of required signatures to spend

the output. Signatures must be placed in the scriptSig using the same order as their corresponding public

keys were placed in the scriptPubKey or redeemScript.

A Locking Script setting a 2-of-3 multi-signature condition looks like this:

3. <Public Key A> <Public Key B> <Public Key C> 3 OP_CHECKMULTISIG

The Locking script above can be satisfied with an Unlocking Script (scriptSig) containing pairs of signatures

and public keys:

OP_0 <Signature B> <Signature C>

or any combination of two signatures from the private keys corresponding to the three listed public keys.

Signatures must be placed in the scriptSig using the same order as their corresponding public keys were

placed in the scriptPubKey or redeemScript.

Note: The prefix OP_0 is required because of a bug in the original implementation of CHECKMULTISIG

where one item too many is popped off the stack. It is ignored by CHECKMULTISIG and is simply a

placeholder.

The two scripts together would form the combined validation script below:

OP_0 <Signature B> <Signature C>\

4. <Public Key A> <Public Key B> <Public Key C> 3 OP_CHECKMULTISIG

This point can be done in the scope of future development. Will need some researching activity.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

268 | P a g e

8.4 Data Output (OP_RETURN) Script
This point can be done in the scope of future development. Will need some researching activity.

8.5 Pay to Script Hash (P2SH)
This point can be done in the scope of future development. Will need some researching activity.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

269 | P a g e

9. Methods of the Creation of Different

Type’s Transactions.
This Paragraph describes the transaction’s creation of the each type step by step with examples according

to trxs types list (see Appendix B).

9.1 Block’s Anatomy
Field
No.

Field Size Description Value or Value
example

 Magic no 4 The first element of the
block is a 4 byte magic
number, whose value is
always 0xD9B4BEF9. Bitcoin
protocol uses little-endian
representation for integers,
therefore reading the file as
binary would result in
following sequence of bytes:
0xF9 0xBE 0xB4 0xD9

value always
0xD9B4BEF9

 Blocksize 4 The magic number is then
followed by 4 bytes that
denote the length of the
block in bytes. The block
length is the number of bytes
following up to the end of
block.

If the 4 bytes
following the magic
no. are 30 75 00 00,
converting them to
little endian gives us:
0x00007530 which is
30000 bytes.

 Blockheader 80 consists of 6 items

Note that all fields in the block header are represented in little-endian format. The
examples below have been converted from little-endian format to normal integer
representation.

Blkhdr-

1

Version 4 Block version number. A new
version number will be
specified when the software
(FOS Daemon) is upgraded.

Version 1 Blocks will
have version number
0x00000001

Blkhdr-

2

hashPrevBlock 32 256-bit hash of the previous
block header.

Example:

http://en.wikipedia.org/wiki/Little-endian
http://en.wikipedia.org/wiki/Little-endian
https://en.bitcoin.it/wiki/Block_hashing_algorithm

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

270 | P a g e

Blkhdr-
3

hashMerkleRoot 32 256-bit hash based on all of the
transactions in the block.

Blkhdr-
4

Time 4 Current timestamp as seconds
since 1970-01-01T00:00 UTC.

If the time field is
0x4e24878f (example),
it means
1311016847 in
decimal. An epoch
converter [..] will show
this time in human
readable format as
Mon, 18 Jul 2011
19:20:47 GMT

Blkhdr-
5

Bits 4 Current target in compact
format.

Example value for Bits:
0x1a0abbcf.
This is the compact
format of target is a
special kind of
floating-point
encoding using 3 bytes
mantissa, the leading
byte as exponent
(where only the 5
lowest bits are used)
and its base is 256.
So, in this case the
exponent is 0x1a = 26

▪ The mantissa

is 0x0abbcf

▪ So the exponent says

this is a 26 byte base

256 integer. To

convert this into it’s

integer value, we

would have pad it with

23 zeros to get:

0a bb cf 00 00 00 00

00 00 00 00 00 00 00

00 00 00 00 00

00 00 00 00 00 00

00

https://en.bitcoin.it/wiki/Target

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

271 | P a g e

▪ This large number is

an even larger number

when converted from

base 256 to decimal.

i.e. 0x0a * 256^26 +

0xbb * 256^25 +

0xcf*256^24 which in

decimal

representation is close

to 4.4155582e+63

Blkhdr-
6

Nonce 4 32-bit number (starts at 0). It is
the number that is
incremented/changed
in mining to create different
block headers, hence different
block hashes.

Example: 0x0aa64562

 Transaction
counter

1 – 9 bytes Non negative integer. VarInt:
1, 3, 5 or 9 bytes depending
on size.
Denotes the number of
transactions in this block.

40.
The first byte is <
0xfd, therefore the
storage length for
this integer is 1 byte
and the value is in-
fact represented by
the first byte itself
i.e. 0x40 (or 64 in
decimal).

 Transactions Variable (non empty) list of
transactions.

For structure of each
transaction, refer
section 9.2.

https://en.bitcoin.it/wiki/Mining
https://en.bitcoin.it/wiki/Transactions

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

272 | P a g e

9.2 Introduction in a Transaction’s Anatomy
Transactions [2.1] are cryptographically signed records that reassign ownership of Bitcoins to new

addresses. Transactions have Inputs – records which reference the unspent funds from other previous

transactions – and Outputs – records which determine the new owner of the transferred Bitcoins, and

which will be referenced as inputs in future transactions as those funds are respent. Outputs are tied to

transaction identifiers (TXIDs), which are the hashes of signed transactions.

Each Input must have a cryptographic digital signature (scriptSig) that unlocks the funds from the prior

transaction. Only the person possessing the appropriate private key is able to create a satisfactory

signature; this in effect ensures that funds can only be spent by their owners.

Each Output determines which Bitcoin address (or other criteria, scriptPubKey) is the recipient of the

funds.

The full value of an Input is always spent; a Trx cannot spend part of the value. Likewise all Outputs are

either spent or unspent, they can’t be partially spent. A Trx “spends” the Outputs which are referenced in

the input portion of the Trx. A Trx creates new spendable “unspent outputs” listed in the output portion of

the Trx.

In a transaction, the sum of all Inputs must be equal to or greater than the sum of all Outputs. If the Inputs

exceed the Outputs, the difference is considered a transaction fee, and is redeemable by whoever first

includes the transaction into the block chain.

The IntDS supports different transaction types which are described in Appendix B.

Bitcoin uses a Stack-Based Btc Scripting Language (see point 8) for transactions. Forth-like, Script is simple,

stack-based, and processed from left to right. It is purposefully not Turing-complete, with no loops.

A new transaction is valid if

• scriptSig of the current input,

Note: scriptSig contains a signature and a public key in case P2PKH. scriptSig = [sig] [pubKey]

combinated with

• scriptPubKey of the previous output,

evaluates to true.

Script: scriptSig + scriptPubKey == true

The IntDS supports different types of script pairs (scriptSig/scriptPubKey) which are described in Appendix

E.

https://en.bitcoin.it/wiki/Private_key
https://en.bitcoin.it/wiki/Transaction_fee

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

273 | P a g e

The diagram below (Pic. 9.2.1) shows sequence of transactions with different numbers of Inputs and
Outputs. The difference between sums of Inputs and Outputs is considered a transaction fee, and is
redeemable by first Miner which includes the transaction into the block chain.

Pic. 9.2.1

General Format of Btc Transaction

Table 9.2.1 shows General Format of a Btc transaction (inside a block) [2.1]:

Table 9.2.1

Field
Order

Field Size in
bytes

Value or Value
example

Description

1 Version number 4 bytes 01 00 00 00 Currentely 1

2 Number of Inputs 1, 3, 5 or 9
bytes

01 (1 byte, 1
Input example)

Positive integer. VarInt: 1, 3, 5 or 9
bytes depending on size

3 List of Inputs <Number of Inputs>- Inputs Lengths,
where each Input Length > 41-49 bytes

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

274 | P a g e

For each Input: from 0 to <Number of Inputs> - 1

Inp-1 Previous
Transaction hash

32 bytes Example:
ec cf 7e 30 34
18 9b 85 19 85
d8 71 f9 13 84
b8 ee 35 7c d4
7c 30 24 73 6e
56 76 eb 2d eb
b3 f2

Doubled SHA256-hashed of all of the
raw byte data of (previous) to-be-used
transaction. This value is not stored
directly in the block-chain and should
be computed by IntDS

Inp-2 Previous Trx
Output index

4 bytes Example:
01 00 00 00
(Output number
2 = Output index
1)

Non negative integer, index refers to an
Output in the previous transaction
which we want to redeem. Counting
from zero.

Inp-3 Input scriptLength 1, 3, 5 or 9
bytes

Example: 8c

The length is 140
bytes, or 0x8c
(8c16 = 8x161 +
12x160 = 140
bytes)

Non negative integer. VarInt: 1, 3, 5 or 9
bytes depending on size.
Length of Script of the current Input.

Inp-4 Input Script /
scriptSig

<Input
scriptLength>
bytes

Example:
49 30 46 02 21
00 9e 03 39 f7
2c 79 3a 89 e6
64 a8 a9 32 df
07 39 62 a3 f8
4e da 0b d9 e0
20 84 a6 a9 56
7f 75 aa 02 21
00 bd 9c ba ca
2e 5e c1 95 75
1e fd fa c1 64
b7 62 50 b1 e2
13 02 e5 1c a8
6d d7 eb d7 02
0c dc 06 01 41
04 50 86 3a d6
4a 87 ae 8a 2f
e8 3c 1a f1 a8
40 3c b5 3f 53
e4 86 d8 51 1d
ad 8a 04 88 7e
5b 23 52 2c d4
70 24 34 53 a2
99 fa 9e 77 23
77 16 10 3a bc
11 a1 df 38 85
5e d6 f2 ee 18
7e 9c 58 2b a6

Raw byte code data for the current
Input Script. (See 8.1.1 scriptSig
structure)

 scriptSig structure in case P2PKH:

ScrI-1 PUSHDATA
Signature Length

1 byte Example:

49
The next byte contains the number of
bytes (Signature Length in hex) to be

http://en.wikipedia.org/wiki/SHA-256
https://en.bitcoin.it/wiki/Hash
file:///C:/Users/trupti.birje/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/LH2MJG3H/scriptSig%23_
file:///C:/Users/trupti.birje/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/LH2MJG3H/scriptSig%23_

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

275 | P a g e

(4916 = 4x161+
9x160 = 73
bytes)

pushed onto the stack. Signature Length

= length rs + 3 (three extra bytes for

the <length rs> byte, the <sequence>

byte and the [sighash] byte)

ScrI-2 [signature] , DER-encoded:

 sequence 1 byte 30 ASN.1 tag identifier (20h = constructed
+ 10h = SEQUENCE and SEQUENCE OF)
sequence = always 0x30

 length rs 1 byte Example:
46

length rs = length r + length s + 2 (two

extra bytes for the two integer bytes)

 integer 1 byte 02 ASN.1 tag identifier, integer = always
0x02

 length r 1 byte Example:
21

number of bytes for r (always 20 or 21)

 r value <=32-33
bytes

Example:
00 9e 03 39 f7 2c
79 3a 89 e6 64 a8
a9 32 df 07 39 62
a3 f8 4e da 0b d9
e0 20 84 a6 a9 56
7f 75 aa

Signature r value, unsigned binary int,

big-endian

Note: some sources converts r into a

little endian byte array. If the leading bit
is not zero then prepend a zero value
byte.

 Integer 1 byte 02 ASN.1 tag identifier, integer = always
0x02

 length s 1 byte Example:
21

number of bytes for s (always 20 or 21)

 s value <=32-33
bytes

Example:
00 bd 9c ba ca 2e
5e c1 95 75 1e fd
fa c1 64 b7 62 50
b1 e2 13 02 e5 1c
a8 6d d7 eb d7 02
0c dc 06

Signature s value, unsigned binary int,

big-endian

Note: some sources converts r into a

little endian byte array. If the leading bit
is not zero then prepend a zero value
byte.

 [sighash] 1 byte Example:
SIGHASH_ALL
01

A flag to Bitcoin signatures that
indicates what parts of the transaction
the signature signs. The unsigned parts
of the transaction may be modified.
There are three base [sighash] types:
SIGHASH_ALL = 01, SIGHASH_NONE,
SIGHASH_SINGLE

ScrI-3 PUSHDATA
Public Key Length

1 byte Example:

41
(4116 = 4x161+
1x160 = 65
bytes)

The next byte contains the number of
bytes (Public Key Length in hex) to be
pushed onto the stack.

ScrI-4 Public Key [pubKey]:

https://bitcoin.org/en/glossary/sighash-all
https://bitcoin.org/en/glossary/signature
https://bitcoin.org/en/glossary/signature
https://bitcoin.org/en/glossary/sighash-all
https://bitcoin.org/en/glossary/sighash-none
https://bitcoin.org/en/glossary/sighash-single

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

276 | P a g e

 Public Key type 1 byte Example:
04

type = 0x04 for uncompressed key
type = 0x02 if Y is even and 0x03 if Y is
odd for compressed key

 X value 32 bytes Example:
50 86 3a d6 4a 87
ae 8a 2f e8 3c 1a
f1 a8 40 3c b5 3f
53 e4 86 d8 51 1d
ad 8a 04 88 7e 5b
23 52

Public key X value as 32 byte big-endian

integers, plain bytes representation

 Y value 32 bytes Example:
2c d4 70 24 34 53
a2 99 fa 9e 77 23
77 16 10 3a bc 11
a1 df 38 85 5e d6
f2 ee 18 7e 9c 58
2b a6

Public key Y value as 32 byte big-endian

integers, plain bytes representation

Inp-5 sequenceNumber 4 bytes FFFFFFFF Always expected to be 0xFFFFFFFF;
irrelevant unless transaction’s LockTime
is > 0

4 Number of
Outputs

1, 3, 5 or 9
bytes

01 (1 byte, 1
Output
example)

Positive integer. VarInt: 1, 3, 5 or 9
bytes depending on size

5 List of Outputs <Number of Outputs>- Outputs Lengths,
where each Output Length > 9-18 bytes

For each Output: from 0 to <Number of Outputs> - 1

Otp-1 value 8 bytes Example: 60 5a
f4 05 00 00 00
00

99900000
Satoshis = 0.999
Btc

Non negative 8 bytes integer (64 bit
integer). The value of output is the
number of Satoshi (1Btc=108 Sat) in hex,
which is stored in the value field in
little-endian form.

Otp-2 Output
scriptLength

1, 3, 5 or 9
bytes

Example: 19

The length is 25
bytes, or 0x19
(1916 = 1x161 +
9x160 = 25 bytes)

Non negative integer. VarInt: 1, 3, 5 or 9
bytes depending on size.
Length of Script of the current Output.

Otp-3 Output Script /
scriptPubKey

<Output
scriptLength>
bytes

Example:
76 a9 14 09 70
72 52 44 38 d0
03 d2 3a 2f 23
ed b6 5a ae 1b
b3 e4 69 88 ac

Output Script (See 8.1.2 scriptPubKey
structure)

 scriptPubKey structure in case P2PKH:

Scr-1 OP_DUP 1 byte 76 Opcode = 0x76 dduplicates the top
stack item.

file:///C:/Users/trupti.birje/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/LH2MJG3H/scriptPubKey%23_
file:///C:/Users/trupti.birje/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/LH2MJG3H/scriptPubKey%23_

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

277 | P a g e

Scr-2 OP_HASH160 1 byte a9 Opcode = 0xa9, the input is hashed
twice: first with SHA-256 and then with
RIPEMD-160.

Scr-3 PUSHDATA
[pubKeyHash]
Length

1 byte Example:
14

(1416 = 1x161+
4x160 = 20
bytes)

The next byte contains the number of
bytes ([pubKeyHash] Length in hex) to
be pushed onto the stack.

Scr-4 [pubKeyHash] 20 bytes Example:
09 70 72 52 44 38
d0 03 d2 3a 2f 23
ed b6 5a ae 1b b3
e4 69

[pubKeyHash] =
RIPEMD160(SHA256(PubKey)) is a part
of Btc address

Scr-5 OP_EQUALVERIFY 1 byte 88 Opcode = 0x88, Returns 1 if the inputs
are exactly equal, 0 otherwise. Marks
transaction as invalid if top stack value
is not true (1).

Scr-6 OP_CHECKSIG 1 byte ac Opcode = 0xac, The signature used by
OP_CHECKSIG must be a valid signature
for this hash and public key.

6 LockTime 4 bytes 00 00 00 00 if non-zero and sequence numbers are
<0xFFFFFFFF>: block height or
timestamp when transaction is final

The first Input of the first transaction in the block is also called “coinbase” (its content was ignored in

earlier versions). The Outputs of the first transaction spend the mined bitcoins for the block. See “Coinbase

Transaction” definition in the Glossary.

9.3 Transaction Fees and Priority (default settings)
A transaction may be safely sent without fees if these conditions are met:

• It is smaller than 1,000 bytes.
• All outputs are 0.01 Btc or larger.
• Its priority is large enough.

Otherwise, the reference implementation will round up the transaction size to the next thousand bytes

and add a fee of 0.1 mBtc (0.0001 Btc) per thousand bytes [2.11]. As an example, a fee of 0.1 mBtc (0.0001

Btc) would be added to a 746 byte transaction, and a fee of 0.2 mBtc (0.0002 Btc) would be added to a

1001 byte transaction. Users may increase the default 0.0001 Btc/kB fee setting, but cannot control

transaction fees for each transaction. Note that a typical transaction is 500 bytes, so the typical transaction

fee for low-priority transactions is 0.1 mBtc (0.0001 Btc), regardless of the number of bitcoins sent.

https://en.bitcoin.it/w/index.php?title=Coinbase_transaction&action=edit&redlink=1
https://en.bitcoin.it/w/index.php?title=Coinbase_transaction&action=edit&redlink=1

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

278 | P a g e

50,000 bytes in the block are set aside for the highest-priority transactions, regardless of transaction fee.

Transactions are added highest-priority-first to this section of the block.

Then transactions that pay a fee of at least 0.00001 Btc/kb are added to the block, highest-fee-per-kilobyte

transactions first, until the block is not more than 750,000 bytes big.

The remaining transactions remain in the Miner’s “memory pool”, and may be included in later blocks if

their priority or fee is large enough. All of the default settings may be changed if a miner wants to create

larger or smaller blocks containing more or fewer free transactions.

Transactions need to have a priority above 57,600,000 to avoid the enforced limit. This threshold is written

in the code as COIN * 144 / 250, suggesting that the threshold represents a one day old, 1 Btc coin (144 is

the expected number of blocks per day) and a transaction size of 250 bytes.

Transaction priority is calculated as a value-weighted sum of input age, divided by transaction size in bytes:

priority = sum(input_value_in_base_units * input_age)/trx_size_in_bytes

where:

input_value_in_base_units – Btc value of Input is multiplied by 108. All values in the Bitcoin

network are integers in Satoshis (1E-8 BTC).

Input_age – number of confirmations. Number of blocks are published to the block-chain after a Trx

with this Input was included in a block that is published to the block-chain.

Trx_size_in_bytes – size of current transaction in bytes for which priority should be calculated.

So, for example, a transaction that has 2 Inputs, one of 5 Btc with 10 confirmations, and one of 2 Btc with 3

confirmations, and has a size of 500bytes, will have a priority of

(500000000 * 10 + 200000000 * 3) / 500 = 11,200,000

Currently, the minimum Btc amount per Trx is 0.0000546 Btc.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

279 | P a g e

9.4 Steps to Create Usual Single-Sig Transactions
A single signature Btc address is an address that is associated with one ECDSA private key. Sending bitcoins

from this address requires signature from the associated private key.

Single-sig Transaction is defined in the IntDS as transaction which is sending some Bitcoins from the Single-

sig Btc address to the Single-sig Btc address. All Inputs and Outputs of this Trx should correspond to Pay-to-

Public-Key-Hash (P2PKH) type of script Pairs.

Steps to create a single signature transaction involve identifying the inputs that can be used and then

sending the bitcoins to the desired Single-sig Btc address.

9.4.1 Steps to create Transaction by using RPC from FOS Daemon

Identify the inputs

To spend a certain number of bitcoins, we need to calculate if there is sufficient balance in the form of

unspent transaction outputs.

Use the Single-sig Transaction Management SubSystem (STrxMSS) to get a list of UTXOs. Identify the ones

that can be used to generate the required output.

Ex: Alice needs to send 0.15 BTC to Bob.

Alice’s wallet application gets the list of UTXOs available to Alice as follows:

No. Transaction ID Index
no.

Value in
Bitcoins

1 ebadfaa92f1fd29e2fe296eda702c48bd11ffd52313e986e99ddad9084062167 1 0.08

2 6596fd070679de96e405d52b51b8e1d644029108ec4cbfe451454486796a1ecf 0 0.165

3 74d788804e2aae10891d72753d1520da1206e6f4f20481cc1555b7f2cb44aca0 1 0.05

4 b2affea89ff82557c60d635a2a3137b8f88f12ecec85082f7d0a1f82ee203ac4 1 0.1

Alice’s wallet application can select combination of transactions from the above list (no. 3 and no.4) or use

just one transaction (no. 2) as input(s) to spend 0.15 BTC.

Note that the inputs selected should account for transaction fee as well. Hence the combination of

transactions 3 & 4 will not work as it will not include transaction fees.

Calculate fees associated with this transaction

Transaction fee: This is calculated based on the size of the transaction in kilobytes, not the value of

transaction in bitcoins. Refer section [8.2] for details of calculating transaction fees.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

280 | P a g e

Transaction fees are implied as the difference between the sum of inputs and the sum of outputs i.e. the

data structure of a transaction does not have a field for fees.

Transaction Fees = Sum (Inputs) – Sum (Outputs)

Hence, the sum of value of UTXOs should be greater than or equal to the sum of bitcoins to send and the

transaction fee.

Total value of selected UTXOs > = Bitcoins to spend + Transaction fee

System Fees (optional): Depending on the application logic, there might be an additional component of

system fees. For example, Alice’s wallet application charges a minimal amount as company fees.

Hence,

Total value of selected UTXOs > = Bitcoins to spend + Transaction fees + System

fees (optional)

Calculate change associated with this transaction

For this example, let’s assume Alice’s wallet application selects transaction no. 2 to spend 0.15 BTC. Also,

assume that the transaction fee is 0.01 BTC and system fee is 0.001 BTC

Hence,

Total value of UTXO(s) = 0.165

BTC to spend = 0.15

System fee = 0.001

Transaction fee = 0.01 (Implied)

So, total BTC Alice would spend = 0.15 + 0.001 + 0.01 = 0.161

Thus, Alice should get 0.004 (0.165 – 0.161) change back, when the transaction is done.

Change = Total value of UTXOs used as inputs – Total BTC that would be spend

Note that change can be 0 in some cases.

Change address

A change address is the address which receives the excess BTC that is leftover after spending the required

amount of BTC and transaction fees.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

281 | P a g e

We need to create a change address for the user to get the reminder of BTC back. Since transaction fee is

implied, failure of explicitly stating the change address will lead to counting the “leftover” BTC as

transaction fee.

Note that there is no need for a change address if there is no “change” left to give back to the user.

Finalize inputs and outputs

In our example,

Input(s) = Transaction no. 2 from list of UTXOs:

Input
No.

Txn ID Index
no.

Value in
Bitcoins

1 6596fd070679de96e405d52b51b8e1d644029108ec4cbfe451454486796a1ecf 0 0.165

 Total 0.165

Outputs = 0.15 BTC to Bob,

 0.004 BTC to Alice’s change address (optional)

 0.001 BTC as company fee (optional)

0.01 BTC as transaction fee (Implied. DO NOT include while making the raw transaction)

Output
No.

BTC Address Value in
Bitcoins

Description

1 1Bobadd4RoXcnBv9hnQ4Y2C1an6NJ4UrjX 0.15 Bob’s payment

2 1ChngaddabccnBm9ikK4J6C5rdloNJ4Klop 0.004 Alice’s change address

3 1Cmpyaddalliou89ikkk0iouiy67ttN9iKkojgh 0.001 Wallet company fee

 Total 0.155

Create transaction

Now that we have a list of inputs and outputs, we can create the raw transaction. Refer [5.7.2] for the RPC

createrawtransaction.

8 bitcoin-cli –testnet createrawtransaction ‘’

9 ‘[

10 {

11 “txid”: “6596fd070679de96e405d52b51b8e1d644029108ec4cbfe451454486796a1ecf”,

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

282 | P a g e

12 “vout” : 0

13 }

14]’

15 ‘{“1Bobadd4RoXcnBv9hnQ4Y2C1an6NJ4UrjX”:0.15,

16 “1ChngaddabccnBm9ikK4J6C5rdloNJ4Klop”:0.004,

17 “1Cmpyaddalliou89ikkk0iouiy67ttN9iKkojgh”:0.001}’

18

Result:

19 01000000011da9283b4ddf8d89eb996988b89ead56cecdc44041ab38bf787f1206cd90b51e0000000000ffffffff

01405dc600000000001976a9140dfc8bafc8419853b34d5e072ad37d1a5159f58488ac00000000

The createrawtransaction RPC will usually return a serialized transaction format encoded as hex. In case of

error, it will return NULL.

Sign transaction

The raw transaction hex code obtained as output from above step will be signed with Alice’s private key.

IntDS will probably be using its own implementation for signing transactions [6.3.2]. For this example,

consider the signrawtransaction RPC from FOS Daemon.

Note: The second optional argument (may be null) for signrawtransaction is an array of previous

transaction outputs that this transaction depends on but may not yet be in the block chain. We assume that

we will be dealing with confirmed transactions only. Hence, this argument can be omitted. However, in case

we want to include this argument, we can get the scriptPubKey of the output by using the

decoderawtransaction RPC [5.7.2].

For this example, let’s assume:

• scriptPubKey for the previous transaction output (with txid

“6596fd070679de96e405d52b51b8e1d644029108ec4cbfe451454486796a1ecf “) is

“76a9144a06df74729aef1dce5e4641960da3a439d2460b88ac”

• Alice’s private key is “93Fu1spd9rCgBc4RbdkxxGcznA4bnQXM6mebzpYqaFFT2P89Cqi”

Hence, signrawtransaction will be as follows:

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

283 | P a g e

bitcoin-cli –testnet signrawtransaction

‘01000000011da9283b4ddf8d89eb996988b89ead56cecdc44041ab38bf787f1206cd90b51e0000000000ffffffff014

05dc600000000001976a9140dfc8bafc8419853b34d5e072ad37d1a5159f58488ac00000000’

‘[

{“txid”:”6596fd070679de96e405d52b51b8e1d644029108ec4cbfe451454486796a1ecf”,

“vout”:0,

“scriptPubKey”:”76a9144a06df74729aef1dce5e4641960da3a439d2460b88ac”},

]’

‘[

“93Fu1spd9rCgBc4RbdkxxGcznA4bnQXM6mebzpYqaFFT2P89Cqi”

]’

This step will return a raw hex code that can be broadcasted to the network.

20 {

21 “hex” :

“01000000011da9283b4ddf8d89eb996988b89ead56cecdc44041ab38bf787f1206cd90b51e000000006a4730440

2200ebea9f630f3ee35fa467ffc234592c79538ecd6eb1c9199eb23c4a16a0485a20220172ecaf6975902584987d

295b8dddf8f46ec32ca19122510e22405ba52d1f13201210256d16d76a49e6c8e2edc1c265d600ec1a64a45153d4

5c29a2fd0228c24c3a524ffffffff01405dc600000000001976a9140dfc8bafc8419853b34d5e072ad37d1a5159f

58488ac00000000”,

22 “complete” : true

23 }

Send transaction

Use the sendrawtransaction RPC [5.7.2] to broadcast the signed transaction to the peer-to-peer network.

24 bitcoin-cli –testnet sendrawtransaction

01000000011da9283b4ddf8d89eb996988b89ead56cecdc44041ab38bf787f1206cd90b51e000000006a47304402

200ebea9f630f3ee35fa467ffc234592c79538ecd6eb1c9199eb23c4a16a0485a20220172ecaf6975902584987d2

95b8dddf8f46ec32ca19122510e22405ba52d1f13201210256d16d76a49e6c8e2edc1c265d600ec1a64a45153d45

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

284 | P a g e

c29a2fd0228c24c3a524ffffffff01405dc600000000001976a9140dfc8bafc8419853b34d5e072ad37d1a5159f5

8488ac00000000

This step will return a transaction id for this transaction.

25 f5a5ce5988cc72b9b90e8d1d6c910cda53c88d2175177357cc2f2cf0899fbaad

9.4.2 Steps to crate Raw-Transaction in case IntDS implementation

All Inputs and Outputs of new Trx are correspond to P2PKH type only. It means that scriptSig and
scriptPubkey should be calculated for each Input and Output according to formulas from paragraph “8.1”.

Some data should be calculated and prepared before IntDS starts creating of new Trx.

Preparation steps:

1. Get unspent Outputs (list of UTXOs) for addresses you want to send money from.
2. Ensure you have the private/public keys pairs for every addresses you want to send money from.
3. Determine the right Btc amount value per each recipient Btc address.
4. Calculate miner fees associated with this transaction (see point 9.3.1)
5. Calculate IntDS fees associated with this transaction if needed (optional)
6. Ensure you have the private/public keys and Btc address for IntDS fees if fees exists (optional)
7. Calculate change associated with this transaction (see point 9.3.1) if needed (optional)
8. Ensure you have the private/public keys and Btc address for change if change exists (optional)

Steps to create new Transaction, which should be hashed and signed (see general transaction format in
the Table 9.2.1):

1. Consider that IntDS has necessary data from preparation stage. TrxNew is new transaction which
should be created. TrxPrev is previos transaction from which IntDS want to redeem an Outputs.

2. Add 4 bytes version number. Currently is 1.
TrxNew Result:

version 01 00 00 00

3. Add 1, 3, 5 or 9 bytes (depending on integer size) Inputs number.

For example 2 Inputs is 1 byte 02
TrxNew Result:

version 01 00 00 00

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

285 | P a g e

Inputs number 02

4. Add all necessary Inputs without scriptSig (UTXO). For each Input:
4.1. Add 32-bytes double hash of previos ransaction TrxPrev from which IntDS want to redeem

an Output.
For example: ec cf 7e 30 34 18 9b 85 19 85 d8 71 f9 13 84 b8 ee 35 7c d4 7c 30 24 73
6e 56 76 eb 2d eb b3 f2

Note: This value should be computed by IntDS. Some sources presents this value in little-endian (reversed).
Should be checked before implementation.

4.2. Add 4-byte field denoting the Output index IntDS want to redeem from the transaction with
the above hash. For example Output number 2 = Output index 1: 01 00 00 00

4.3. Add one byte for scriptSig length as 0x00 (it will be replaced in the future steps): 00
4.4. Add a 4-byte field denoting the sequence.

This is currently always set to 0xffffffff: ff ff ff ff
4.5. Repeat steps 4.1 – 4.4 for second Input in this example.

For example:
32 bytes hash of previos Trx: be 66 e1 0d a8 54 e7 ae a9 33 8c 1f 91 cd 48 97 68 d1 d6 d7 18
9f 58 6d 7a 36 13 f2 a2 4d 53 96

Output index 0: 00 00 00 00

Final TrxNew Result for two Inputs:

version 01 00 00 00

Inputs number 02

Previos Trx hash for Input0 ec cf 7e 30 34 18 9b 85 19 85 d8 71 f9 13 84 b8 ee 35 7c
d4 7c 30 24 73 6e 56 76 eb 2d eb b3 f2

Previos Trx Output index 01 00 00 00

scriptSig length 00

sequence ff ff ff ff

Previos Trx hash for Input1 be 66 e1 0d a8 54 e7 ae a9 33 8c 1f 91 cd 48 97 68 d1 d6
d7 18 9f 58 6d 7a 36 13 f2 a2 4d 53 96

Previos Trx Output index 00 00 00 00

scriptSig length 00

sequence ff ff ff ff

5. Add 1, 3, 5 or 9 bytes (depending on integer size) Outputs number. For example 1 Output is 1 byte
01

6. Add all desired Outputs. For each Output:
6.1. Write an 8-byte field (64 bit integer, little-endian) containing the amount IntDS want to

redeem from the specified Output.
For example: 0.999 Btc = 99,900,000 Stoshis10 = 5645a6016
Add additional zeros to make 8 bytes: 00 00 00 00 05 64 5a 60

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

286 | P a g e

Represent this value in a little-endian: 60 5a 64 05 00 00 00 00
6.2 Make scriptPubKey from recepeint Btc address 1KKKK6N21Xko48zWKuQKXdvSsCf95ibHFa

according to example in the 8.1.2 point: c8 e9 09 96 c7 c6 08 0e e0 62 84 60 0c 68 4e d9 04
d1 4c 5c

6.3 Add length of scriptPubKey 25 bytes = 0x19 : 19
6.4 Add scriptPubKey: c8 e9 09 96 c7 c6 08 0e e0 62 84 60 0c 68 4e d9 04 d1 4c 5c
6.5 Repeat steps 6.1-6.4 for each Output. Nothing should be repeated for current example, because

there is only one output.
7. Write 4-byte LockTime field: 00 00 00 00

Final TrxNew Result for two Inputs and One Output:

version 01 00 00 00

Inputs number 02

Previos Trx hash for Input0 ec cf 7e 30 34 18 9b 85 19 85 d8 71 f9 13 84 b8 ee 35 7c
d4 7c 30 24 73 6e 56 76 eb 2d eb b3 f2

Previos Trx Output index 01 00 00 00

scriptSig length 00

sequence ff ff ff ff

Previos Trx hash for Input1 be 66 e1 0d a8 54 e7 ae a9 33 8c 1f 91 cd 48 97 68 d1 d6
d7 18 9f 58 6d 7a 36 13 f2 a2 4d 53 96

Previos Trx Output index 00 00 00 00

scriptSig length 00

sequence ff ff ff ff

Outputs number 01

Btc value 60 5a 64 05 00 00 00 00

scriptPubKey length 19

scriptPubKey c8 e9 09 96 c7 c6 08 0e e0 62 84 60 0c 68 4e d9 04 d1 4c
5c

LockTime 00 00 00 00

8. Copy current transaction TrxNew as result of step 7 to make template. TrxNewTempl is a copy of
TrxNew.

9. Sign the transaction. For each Input:
9.1 Create template of transaction for first input “Input0”. Copy TrxNewTempl as result of step 8 to

make template. TrxCopy is a copy of TrxNewTempl.
9.2 Create subscript from previos ransaction TrxPrev. Subscript is scriptPubKey of the Output IntDS

wants to redeem Btc.
For example: 76 a9 14 01 09 66 77 60 06 95 3d 55 67 43 9e 5e 39 f8 6a 0d 27 3b ee 88 ac

9.3 Replace one byte for scriptSig length from step 4.3 with the length of subscript from step 9.2 in
TrxCopy.
For current example: length is 25 byte = 0x19. Replace 00 by 19

9.4 Insert subscript from step 9.2 after scriptSig length before sequence field
TrxCopy Result for Input0:

file:///C:/Users/trupti.birje/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/LH2MJG3H/scriptPubKey%23_

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

287 | P a g e

version 01 00 00 00

Inputs number 02

Previos Trx hash for Input0 ec cf 7e 30 34 18 9b 85 19 85 d8 71 f9 13 84 b8 ee 35 7c
d4 7c 30 24 73 6e 56 76 eb 2d eb b3 f2

Previos Trx Output index 01 00 00 00

scriptSig length 19

Subscript=scriptPubKey of
previos Trx Output

76 a9 14 01 09 66 77 60 06 95 3d 55 67 43 9e 5e 39 f8 6a
0d 27 3b ee 88 ac

sequence ff ff ff ff

Previos Trx hash for Input1 be 66 e1 0d a8 54 e7 ae a9 33 8c 1f 91 cd 48 97 68 d1 d6
d7 18 9f 58 6d 7a 36 13 f2 a2 4d 53 96

Previos Trx Output index 00 00 00 00

scriptSig length 00

sequence ff ff ff ff

Outputs number 01

Btc value 60 5a 64 05 00 00 00 00

scriptPubKey length 19

scriptPubKey c8 e9 09 96 c7 c6 08 0e e0 62 84 60 0c 68 4e d9 04 d1 4c
5c

LockTime 00 00 00 00

9.5 Append 4-byte Sighash type code in little-endian representation in the end of TrxCopy.
SIGHASH_ALL=0x00000001 type is used as default for normal single-sig transaction (see Appendix K).
little-endian representation: 01 00 00 00
TrxCopy Result for Input0:

version 01 00 00 00

Inputs number 02

Previos Trx hash for Input0 ec cf 7e 30 34 18 9b 85 19 85 d8 71 f9 13 84 b8 ee 35 7c
d4 7c 30 24 73 6e 56 76 eb 2d eb b3 f2

Previos Trx Output index 01 00 00 00

scriptSig length 19

Subscript=scriptPubKey of
previos Trx Output

76 a9 14 01 09 66 77 60 06 95 3d 55 67 43 9e 5e 39 f8 6a
0d 27 3b ee 88 ac

sequence ff ff ff ff

Previos Trx hash for Input1 be 66 e1 0d a8 54 e7 ae a9 33 8c 1f 91 cd 48 97 68 d1 d6
d7 18 9f 58 6d 7a 36 13 f2 a2 4d 53 96

Previos Trx Output index 00 00 00 00

scriptSig length 00

sequence ff ff ff ff

Outputs number 01

Btc value 60 5a 64 05 00 00 00 00

scriptPubKey length 19

scriptPubKey c8 e9 09 96 c7 c6 08 0e e0 62 84 60 0c 68 4e d9 04 d1 4c
5c

LockTime 00 00 00 00

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

288 | P a g e

Temporarily appended
Sighash type

01 00 00 00

9.6 Serialize TrxCopy. This serialization is double-SHA256 hash of TrxCopy.
Result: aa c3 21 5d c6 c0 ed 93 92 63 9d 79 cc ce 31 d3 2f 74 7c 74 81 26 d1 be 57 c7 d3
7e 94 8d 50 db

9.7 Create a DER-encoded signature for hash from step 9.6. (see point 6.3.3)
9.8 Make a scriptSig (see point 8.1.1)

For example:
4930460221009e0339f72c793a89e664a8a932df073962a3f84eda0bd9e02084a6a9567f75aa022100bd9cba
ca2e5ec195751efdfac164b76250b1e21302e51ca86dd7ebd7020cdc0601410450863ad64a87ae8a2fe83c1a
f1a8403cb53f53e486d8511dad8a04887e5b23522cd470243453a299fa9e77237716103abc11a1df38855ed6
f2ee187e9c582ba6

Note: This scriptSig example is not correspond to hash from step 8.6. This scriptSig can not be used for JUnit
test.

9.9 Verify the signature of this Input by using scriptSig from step 9.8 and scriptPubKey from step 9.2
(see point 8.1.3)

9.10 Go to step 9.11 if execution of scripts validation from step 9.9 return true otherwise repeat
steps 9.1-9.9

9.11 Replace one byte for scriptSig length from step 4.3 with the length of actual scriptSig from
step 9.8 in TrxNew. For current example: length is 140 bytes = 0x8C. Replace 00 by 8c

9.12 Insert actual scriptSig from step 9.8 after scriptSig length before sequence field in TrxNew

TrxNew Result for signed Input0:

version 01 00 00 00

Inputs number 02

Previos Trx hash
for Input0

ec cf 7e 30 34 18 9b 85 19 85 d8 71 f9 13 84 b8 ee 35 7c d4 7c 30 24
73 6e 56 76 eb 2d eb b3 f2

Previos Trx
Output index

01 00 00 00

scriptSig length 8c

scriptSig 49 30 46 02 21 00 9e 03 39 f7 2c 79 3a 89 e6 64 a8 a9 32 df 07 39 62
a3 f8 4e da 0b d9 e0 20 84 a6 a9 56 7f 75 aa 02 21 00 bd 9c ba ca 2e
5e c1 95 75 1e fd fa c1 64 b7 62 50 b1 e2 13 02 e5 1c a8 6d d7 eb d7
02 0c dc 06 01 41 04 50 86 3a d6 4a 87 ae 8a 2f e8 3c 1a f1 a8 40 3c
b5 3f 53 e4 86 d8 51 1d ad 8a 04 88 7e 5b 23 52 2c d4 70 24 34 53 a2
99 fa 9e 77 23 77 16 10 3a bc 11 a1 df 38 85 5e d6 f2 ee 18 7e 9c 58
2b a6

sequence ff ff ff ff

Previos Trx hash
for Input1

be 66 e1 0d a8 54 e7 ae a9 33 8c 1f 91 cd 48 97 68 d1 d6 d7 18 9f 58
6d 7a 36 13 f2 a2 4d 53 96

file:///C:/Users/trupti.birje/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/LH2MJG3H/scriptSig%23_

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

289 | P a g e

Previos Trx
Output index

00 00 00 00

scriptSig length 00

sequence ff ff ff ff

Outputs number 01

Btc value 60 5a 64 05 00 00 00 00

scriptPubKey
length

19

scriptPubKey c8 e9 09 96 c7 c6 08 0e e0 62 84 60 0c 68 4e d9 04 d1 4c 5c

LockTime 00 00 00 00

9.13 Repeat steps 9.1-9.12 for each Input. Repeat steps for Input1 in this example.
10 Have a final result of signed transaction

Final TrxNew Result for two signed Inputs and One Output:

version 01 00 00 00

Inputs number 02

Previos Trx hash
for Input0

ec cf 7e 30 34 18 9b 85 19 85 d8 71 f9 13 84 b8 ee 35 7c d4 7c 30 24
73 6e 56 76 eb 2d eb b3 f2

Previos Trx
Output index

01 00 00 00

scriptSig length 8c

scriptSig 49 30 46 02 21 00 9e 03 39 f7 2c 79 3a 89 e6 64 a8 a9 32 df 07 39 62
a3 f8 4e da 0b d9 e0 20 84 a6 a9 56 7f 75 aa 02 21 00 bd 9c ba ca 2e
5e c1 95 75 1e fd fa c1 64 b7 62 50 b1 e2 13 02 e5 1c a8 6d d7 eb d7
02 0c dc 06 01 41 04 50 86 3a d6 4a 87 ae 8a 2f e8 3c 1a f1 a8 40 3c
b5 3f 53 e4 86 d8 51 1d ad 8a 04 88 7e 5b 23 52 2c d4 70 24 34 53 a2
99 fa 9e 77 23 77 16 10 3a bc 11 a1 df 38 85 5e d6 f2 ee 18 7e 9c 58
2b a6

sequence ff ff ff ff

Previos Trx hash
for Input1

be 66 e1 0d a8 54 e7 ae a9 33 8c 1f 91 cd 48 97 68 d1 d6 d7 18 9f 58
6d 7a 36 13 f2 a2 4d 53 96

Previos Trx
Output index

00 00 00 00

scriptSig length 8c

scriptSig 49 30 46 02 21 00 cf 4d 75 71 dd 47 a4 d4 7f 5c b7 67 d5 4d 67 02 53
0a 35 55 72 6b 27 b6 ac 56 11 7f 5e 78 08 fe 02 21 00 8c bb 42 23 3b
b0 4d 7f 28 a7 15 cf 7c 93 8e 23 8a fd e9 02 07 e9 d1 03 dd 90 18 e1
2c b7 18 0e 01 41 04 2d aa 93 31 5e eb be 2c b9 b5 c3 50 5d f4 c6 fb
6c ac a8 b7 56 78 60 98 56 75 50 d4 82 0c 09 db 98 8f e9 99 7d 04 9d
68 72 92 f8 15 cc d6 e7 fb 5c 1b 1a 91 13 79 99 81 8d 17 c7 3d 0f 80
ae f9

sequence ff ff ff ff

Outputs number 01

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

290 | P a g e

Btc value 60 5a 64 05 00 00 00 00

scriptPubKey
length

19

scriptPubKey c8 e9 09 96 c7 c6 08 0e e0 62 84 60 0c 68 4e d9 04 d1 4c 5c

LockTime 00 00 00 00

11 Serialize the TrxNew into hexadecimal format.
12 Propagate the transaction TrxNew.

Note: 1. This scenario is based on bitcoin wiki article [2.23]. Other solution with more clear detailed
explanation was not found at this moment. The biggest complication is the signature appears in the middle
of the transaction, which raises the question of how to sign the transaction before you have the signature.
Another complication is transaction with many Inputs. This scenario is clear in case one Input but there is
high probability of another sequence of steps in case many Inputs.

5. RPC function “sendrawtransaction” can be used instead of steps 11 and 12 (see point 5.7.2)

9.5 Steps to Create Multi-Sig transactions
See point 8.3

This point can be done in the scope of future development. Will need some researching activity.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

291 | P a g e

9.6 Ways to Create Contracts
This point can be done in the scope of future development. Will need some researching activity.

A distributed contract is a method of using Bitcoin to form agreements with people via the block chain.

Contracts allow you to solve common problems in a way that minimizes trust. Minimal trust often makes

things more convenient by allowing human judgements to be taken out of the loop, thus allowing

complete automation.

This point can be updated according to scope of future development. Will need some researching activity.

A distributed contract is a method of using Bitcoin to form agreements with people via the block chain. Contracts

allow you to solve common problems in a way that minimizes trust. Minimal trust often makes things more

convenient by allowing human judgements to be taken out of the loop, thus allowing complete automation.

9.6.1 Bitcoin Contract Basics
Scripts: Every transaction in Bitcoin has one or more inputs and outputs. Each input/output has a small, pure

function associated with it called a script. Scripts can contain signatures over simplified forms of the transaction

itself.

Lock time: Every transaction can have a lock time associated with it. This allows the transaction to be pending: until

an agreed-upon future time, specified either as a block index or as a timestamp (the same field is used for both, but

values less than 500 million are interpreted as a block index). If a transaction’s lock time has been reached, we say it

is final.

• Non-zero nLockTime less than 500 million is interpreted as the block height, meaning the transaction is not

included in the blockchain prior to the specified block height.

• Non-zero nLockTime greater than 500 million is interpreted as the Unix Epoch timestamp (seconds since Jan-

1-1970) and the transaction is not included in the blockchain prior to the specified time.

Sequence number:

Each transaction input has a sequence number.

• In a normal transaction that just moves value around, the sequence numbers are all UINT_MAX and the lock

time is zero.

• If the lock time has not yet been reached, but all the sequence numbers are UINT_MAX, the transaction is

also considered final.

• In order to enforce lock time to a transaction, sequence number should be less than UINT_MAX, else the

lock time field will be ignored.

• Sequence numbers can be used to issue new versions of a transaction without invalidating other inputs

signatures, e.g., in the case where each input on a transaction comes from a different party, each input may

start with a sequence number of zero, and those numbers can be incremented independently.

Note: UINT_MAX is the maximum value for an object of type unsigned int. Value = 4294967295U. Thus, UINT_MAX is

an unsigned int (At least in the [−32767, +32767] range, at least 16 bits in size, but unsigned.)

https://en.bitcoin.it/wiki/Transaction
https://en.bitcoin.it/wiki/Script

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

292 | P a g e

These features can be used to achieve the following:

• You send a transaction with a LockTime in the future and a sequence number of 0. The transaction is then

not considered by the network to be “final”, and it can’t be included in a block until the specified LockTime is

reached.

• If you ever want to lock the transaction permanently, you can set the sequence number to UINT_MAX. Then

the transaction is considered to be final, even if LockTime has not been reached.

9.6.2 Types of contracts
Contracts can be of varying types depending on how we embed the conditions of the contract within the transaction.

There are two general patterns for safely creating contracts:

1. Transactions are passed around outside of the P2P network, in partially-complete or invalid forms.

2. Two transactions are used: one (the contract) is created and signed but not broadcast right away. Instead, the

other transaction (the payment) is broadcast after the contract is agreed to lock in the money, and then the

contract is broadcast.

Note: All bitcoin addresses, private keys, scripts used in examples below are purely for demonstration purpose. These

transactions have not been tested on the actual network.

Single signature transaction with nLockTime
Note: Locktime and nLocktime are synonyms.

BIP-0065 (in draft status at the time of writing i.e. August 2015) describes a new opcode

(OP_CHECKLOCKTIMEVERIFY) for the Bitcoin scripting system that allows a transaction output to be made

unspendable until some point in the future [2.19]. We might need to upgrade this contract functionality once this BIP

has been approved.

This transaction is the simplest form of contract that can be used with single signature and the Locktime feature. The

funds are locked up in a BTC address until the time specified in nLockTime field is reached. The recipient can spend

funds only after nLockTime has been reached and the transaction has been accepted in the blockchain.

The responsibility of storing such a transaction and broadcasting it when valid, lies with the sender or the recipient

of the transaction.

Example:

In the context of a web wallet, this theme can be used for cold storage functionality.

Alice (the user) opts for locking her funds from a particular wallet (10 BTC) for period of 3 months from the current

date.

This can be achieved with following 2 transactions:

Tx1: sends funds from wallet to cold storage

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

293 | P a g e

Tx2 (the contract): sends funds from cold storage back to Alice after the Locktime is elapsed

Details of these 2 transactions are as follows:

(Refer section [5.7.2] for detailed descriptions of RPCs used.)

6. Send funds to Cold Storage (simple single signature transaction):

a) eWallet system creates a dedicated BTC address to receive Alice’s funds that need to be locked up.

b) Alice creates, signs & broadcasts a transaction (Tx1) that spends all funds from her wallet to the system

generated ‘Cold Storage’ BTC address.

i. Create raw transaction

Inputs for Tx1 = all UTXO from Alice’s wallet

Output for Tx1

- Output amount: Sum of funds in Alice’s wallet.

- Output address: Cold Storage BTC address.

Bitcoind createrawtransaction

‘[{“txid”:”aaa…”,”vout”:1},{“txid”:”bbb…”,”vout”:0}]’ ‘{“csbtcaddr…”:9.8,”cmpfees…”:0.2}’

The output will be a raw transaction hex code.

0100000001bfd27404f34449a53c6a5d0a4b972342e0193441dbfb66c8b5f7806d3bb349760000000000ffffffff01
00f2052a010000001976a914249604bc668da89a7d2d494b89fba47f529c52f788ac00000000

Note that depending on the eWallet application logic, one of the outputs can include the company fees for

this cold storage functionality.

ii. Sign raw transaction.

The raw transaction hex code obtained as output from above step will be signed with Alice’s private key.

iDaemon will probably be using its own implementation for signing transactions [6.3.2].

For this example, consider the signrawtransaction RPC from FOS Daemon.

Note: The second optional argument (may be null) for signrawtransaction is an array of previous

transaction outputs that this transaction depends on but may not yet be in the block chain. We assume

that we will be dealing with confirmed transactions only. Hence, this argument can be omitted. However,

in case we want to include this argument, we can get the scriptPubKey of the output by using the

decoderawtransaction RPC [5.7.2].

bitcoind decoderawtransaction
‘0100000001bfd27404f34449a53c6a5d0a4b972342e0193441dbfb66c8b5f7806d3bb349760000000000ffffffff0
100f2052a010000001976a914249604bc668da89a7d2d494b89fba47f529c52f788ac00000000’

{

 “txid” : “ef7c0cbf6ba5af68d2ea239bba709b26ff7b0b669839a63bb01c2cb8e8de481e”,

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

294 | P a g e

 “version” : 1,

 “locktime” : 0,

 “vin” : [

 {

 “txid” : “d7c7557e5ca87d439e9ab6eb69a04a9664a0738ff20f6f083c1db2bfd79a8a26”,

 “vout” : 0,

 “scriptSig” : {

 “asm” :
“3045022100ee69171016b7dd218491faf6e13f53d40d64f4b40123a2de52560feb95de63b902206f23a0919471eaa
1e45a0982ed288d374397d30dff541b2dd45a4c3d0041acc001
03a7c1fd1fdec50e1cf3f0cc8cb4378cd8e9a2cee8ca9b3118f3db16cbbcf8f326”,

 “hex” :
“483045022100ee69171016b7dd218491faf6e13f53d40d64f4b40123a2de52560feb95de63b902206f23a0919471e
aa1e45a0982ed288d374397d30dff541b2dd45a4c3d0041acc0012103a7c1fd1fdec50e1cf3f0cc8cb4378cd8e9a2c
ee8ca9b3118f3db16cbbcf8f326”

 },

 “sequence” : 4294967295

 }

],

 “vout” : [

 {

 “value” : 5.00,

 “n” : 0,

 “scriptPubKey” : {

 “asm” : “OP_DUP OP_HASH160 56847befbd2360df0e35b4e3b77bae48585ae068
OP_EQUALVERIFY OP_CHECKSIG”,

 “hex” : “76a91456847befbd2360df0e35b4e3b77bae48585ae06888ac”,

 “reqSigs” : 1,

 “type” : “pubkeyhash”,

 “addresses” : [

 “aaa…”

]

 }

 },

 {

 “value” : 5.00,

 “n” : 1,

 “scriptPubKey” : {

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

295 | P a g e

 “asm” : “OP_DUP OP_HASH160 2b14950b8d31620c6cc923c5408a701b1ec0a020
OP_EQUALVERIFY OP_CHECKSIG”,

 “hex” : “76a9142b14950b8d31620c6cc923c5408a701b1ec0a02088ac”,

 “reqSigs” : 1,

 “type” : “pubkeyhash”,

 “addresses” : [

 “bbb…”

]

 }

 }

]

}

Note that Alice’s private key will be generated from the mnemonic seed according to Type 1

Deterministic approach [6.3.1]. For this step, assume Alice’s private key be

“93Fu1spd9rCgBc4RbdkxxGcznA4bnQXM6mebzpYqaFFT2P89Cqi”

bitcoind signrawtransaction
‘0100000001bfd27404f34449a53c6a5d0a4b972342e0193441dbfb66c8b5f7806d3bb349760000000000ffffffff0
100f2052a010000001976a914249604bc668da89a7d2d494b89fba47f529c52f788ac00000000’

‘[

{“txid”:”aaa…”,”vout”:1,”scriptPubKey”:”76a9144a06df74729aef1dce5e4641960da3a439d2460b88ac”},

{“txid”:”bbb…”,”vout”:0,”scriptPubKey”:”76a914f88262828f5e64b454249e4c45ddb6071a2ab0a988ac”}

]’

‘[

“93Fu1spd9rCgBc4RbdkxxGcznA4bnQXM6mebzpYqaFFT2P89Cqi”

]’

This step will return a raw hex code that can be broadcasted to the network.

{

 “hex” :
“01000000011da9283b4ddf8d89eb996988b89ead56cecdc44041ab38bf787f1206cd90b51e000000006a473044022
00ebea9f630f3ee35fa467ffc234592c79538ecd6eb1c9199eb23c4a16a0485a20220172ecaf6975902584987d295b
8dddf8f46ec32ca19122510e22405ba52d1f13201210256d16d76a49e6c8e2edc1c265d600ec1a64a45153d45c29a2
fd0228c24c3a524ffffffff01405dc600000000001976a9140dfc8bafc8419853b34d5e072ad37d1a5159f58488ac0
0000000”,

 “complete” : true

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

296 | P a g e

}

iii. Send raw transaction

Use sendrawtransaction RPC to broadcast the hex string obtained above to the network.

Bitcoind sendrawtransaction
01000000011da9283b4ddf8d89eb996988b89ead56cecdc44041ab38bf787f1206cd90b51e000000006a4730440220
0ebea9f630f3ee35fa467ffc234592c79538ecd6eb1c9199eb23c4a16a0485a20220172ecaf6975902584987d295b8
dddf8f46ec32ca19122510e22405ba52d1f13201210256d16d76a49e6c8e2edc1c265d600ec1a64a45153d45c29a2f
d0228c24c3a524ffffffff01405dc600000000001976a9140dfc8bafc8419853b34d5e072ad37d1a5159f58488ac00
000000

This step will return a transaction id for this transaction.

F5a5ce5988cc72b9b90e8d1d6c910cda53c88d2175177357cc2f2cf0899fbaad

7. Receive funds from Cold Storage (transaction with nLockTime, sequence number fields set):

a) eWallet system creates a transaction Tx2 (the contract) that spends Tx1 back to BTC address determined for

Alice. This transaction will have the nLockTime field set with value equal to a Unix Epoch timestamp (seconds

since 1 Jan 1970) value [3.6]. The sequence number field will be set to 0. Following is the sequence of steps

to achieve this:

i. Create raw transaction to spend Tx1

Input:

txid = transaction id of Tx1
vout = 0

Output:
address = Alice’s BTC address
amount = 9.8 (total BTC that were locked in Step 1)

bitcoind createrawtransaction ‘[{“txid”:”
f5a5ce5988cc72b9b90e8d1d6c910cda53c88d2175177357cc2f2cf0899fbaad”,”vout”:0}]’
‘{“mirQLRn6ciqa3WwJSSe7RSJNVfAE9zLkS5”:9.8}’

0100000001bfd27404f34449a53c6a5d0a4b972342e0193441dbfb66c8b5f7806d3bb349760000000000ffffffff01
00f2052a010000001976a914249604bc668da89a7d2d494b89fba47f529c52f788ac00000000

Above raw transaction has default sequence number (UINT_MAX) and lock time as 0.

System needs to set lock time to 20 Nov 2015. Also, sequence number needs to be set less than UNIT_MAX.

ii. Modify the raw transaction above to set: sequence number = 0, lock time = equivalent Unix Epoch

timestamp value

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

297 | P a g e

Dissecting the raw transaction, we get:

01000000 version

01 input count

bfd27404f34449a53c6a5d0a4b972342e0193441dbfb66c8
b5f7806d3bb34976

previous output hash

00000000 previous output index

00 script length

ffffffff sequence number

01 output count

00f2052a01000000 output value

19 script length

76a914249604bc668da89a7d2d494b89fba47f529c52f788
ac

scriptPubKey

00000000 locktime

Setting the sequence number to 0:

Identify the bytes corresponding to sequence number & set all 4 bytes to 0.

0100000001bfd27404f34449a53c6a5d0a4b972342e0193441dbfb66c8b5f7806d3bb349760000000000ffffffff0100f2
052a010000001976a914249604bc668da89a7d2d494b89fba47f529c52f788ac00000000

0100000001bfd27404f34449a53c6a5d0a4b972342e0193441dbfb66c8b5f7806d3bb349760000000000000000000100f2
052a010000001976a914249604bc668da89a7d2d494b89fba47f529c52f788ac00000000

Setting the lock time to 20 Nov 2015:

(For the sake of this example, an online time converter tool was used to convert datetime into Unix Epoch

Timestamp. Depending on the programming language used, respective time functions can be called for this

conversion.

For example, for C we can use mktime(), for Java we can use java.time package.)

Convert this date to Unix Epoch Time: 1447981200

Value in Hex: 564E7090

Replace the last 4 bytes of raw transaction with this new value.

0100000001bfd27404f34449a53c6a5d0a4b972342e0193441dbfb66c8b5f7806d3bb349760000000000000000000100f2
052a010000001976a914249604bc668da89a7d2d494b89fba47f529c52f788ac00000000

0100000001bfd27404f34449a53c6a5d0a4b972342e0193441dbfb66c8b5f7806d3bb349760000000000000000000100f2
052a010000001976a914249604bc668da89a7d2d494b89fba47f529c52f788ac564E7090

New raw transaction (Tx2) with updated sequence number and lock time:

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

298 | P a g e

0100000001bfd27404f34449a53c6a5d0a4b972342e0193441dbfb66c8b5f7806d3bb349760000000000000000000100f2
052a010000001976a914249604bc668da89a7d2d494b89fba47f529c52f788ac55932D80

iii. System signs Tx2 with its own private key.

The raw transaction hex code obtained as output from above step will be signed with Alice’s private key.

iDaemon will probably be using its own implementation for signing transactions [6.3.2].

For this example, consider the signrawtransaction RPC from FOS Daemon.

Note that Alice’s private key will be generated from the mnemonic seed according to Type 1 Deterministic

approach [6.3.1]. Assume the system’s private key to be

“10De1spd9rCgBc4RbdkxxGcznA4bnQXM6mebzpYqaFFT2P89Cqi”

bitcoind signrawtransaction
0100000001bfd27404f34449a53c6a5d0a4b972342e0193441dbfb66c8b5f7806d3bb349760000000000000000000100f2
052a010000001976a914249604bc668da89a7d2d494b89fba47f529c52f788ac55932D80

‘[

{“txid”:”
f5a5ce5988cc72b9b90e8d1d6c910cda53c88d2175177357cc2f2cf0899fbaad”,”vout”:0,”scriptPubKey”:”76a9144
a06df74729aef1dce5e4641960da3a439d2460b88ac”}

]’

‘[

“10De1spd9rCgBc4RbdkxxGcznA4bnQXM6mebzpYqaFFT2P89Cqi”

]’

This step will return a raw hex code that can be broadcasted to the network.

{

 “hex” :
“0100000001bfd27404f34449a53c6a5d0a4b972342e0193441dbfb66c8b5f7806d3bb3497600000000db0048304502210
0bb9ef133361524477c4811b73f7b5093108f646d260dfdd066ea3a06589cf47f02206b91c5bfb091784b2dc62a71477d5
e73a53c3019b6e0b61a4888f24c991e930a0148304502210084470f4972aab95892e6871168fa0d8456a7e4f55cfc8786a
5ffef289d9d312602206d048d4fa39fd987235ad025c0e2d30ff4d6e7ab60ed5fb899952a3ef888cbf4014752210287f91
69e265380a87cfd717ec543683f572db8b5a6d06231ff59c43429063ae4210343947d178f20b8267488e488442650c27e1
e9956c824077f646d6ce13a285d8452aeffffffff0100f2052a010000001976a914249604bc668da89a7d2d494b89fba47
f529c52f788ac00000000”,

 “complete” : true

}

b) System permanently deletes the private key used to sign this transaction. This ensures that no one has

access to funds in cold storage.

c) The system broadcasts this transaction when the nLockTime time is reached.

Bitcoind sendrawtransaction
0100000001bfd27404f34449a53c6a5d0a4b972342e0193441dbfb66c8b5f7806d3bb3497600000000db00483045022100
bb9ef133361524477c4811b73f7b5093108f646d260dfdd066ea3a06589cf47f02206b91c5bfb091784b2dc62a71477d5e

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

299 | P a g e

73a53c3019b6e0b61a4888f24c991e930a0148304502210084470f4972aab95892e6871168fa0d8456a7e4f55cfc8786a5
ffef289d9d312602206d048d4fa39fd987235ad025c0e2d30ff4d6e7ab60ed5fb899952a3ef888cbf4014752210287f916
9e265380a87cfd717ec543683f572db8b5a6d06231ff59c43429063ae4210343947d178f20b8267488e488442650c27e1e
9956c824077f646d6ce13a285d8452aeffffffff0100f2052a010000001976a914249604bc668da89a7d2d494b89fba47f
529c52f788ac00000000

35cdf0594ef0890703a8ede92f6fc80272d0b0b73d19d2a9af80dd17c11e188c

Note: The system needs to monitor when nLockTime will be reached and should broadcast the transaction at the

correct time. Broadcasting the transaction earlier than nLockTime might result in dropping of the transaction.

8. of 2 escrow
This escrow transaction doesn’t require any 3rd party and utilizes multisig feature of bitcoin. It involves 2 users. This

is generally an agreement between 2 parties regarding payment of bitcoins that kicks off sometime in future,

depending on certain conditions being fulfilled.

• The ‘future time’ part can be implemented by a field called ‘locktime’ in a bitcoin raw transaction.

• The ‘condition’ part is a bit tricky. It generally involves consensus of the 2 parties involved and involves some

human intervention.

Basic steps involved can be summarized with the following example:

Bob wants to lend Alice 10 BTC but wants to make sure that Alice does not cheat him. Both, Alice & Bob agree that

Bob will get the amount back after 1 July 2016. Also, they want the contract to be flexible so that they can change

certain aspects (ex. Withdrawing early, extending the 1 July 2016 date etc.)

1. Each party shares their respective public key with each other.

(Use validateaddress <bitcoinaddress>: Return information about <bitcoinaddress>.)

validateaddress RPC shows following information ONLY when the bitcoin address belongs to the user and is

created using the standard bitcoin client.

Bitcoind validateaddress mpzXCDpitVhGe1WofQXjzC1zgxGA5GCfgD

{

 “isvalid” : true,

 “address” : “mpzXCDpitVhGe1WofQXjzC1zgxGA5GCfgD”,

 “ismine” : true,

 “isscript” : false,

 “pubkey” :

 “0287f9169e265380a87cfd717ec543683f572db8b5a6d06231ff59c43429063ae4”,

 “iscompressed” : true,

 “account” : “”

}

2. Bob creates a P2SH address that requires both parties to sign.

a) Get public key from Alice (Step 1)

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

300 | P a g e

b) Create multisig address that requires both Alice’s & Bob’s signatures.

bitcoind addmultisigaddress 2
‘[“0287f9169e265380a87cfd717ec543683f572db8b5a6d06231ff59c43429063ae4”,”0343947d178f20b8267488e4884426
50c27e1e9956c824077f646d6ce13a285d84”]’

3MxKEf2su6FGAUfCEAHreGFQvEYrfYNHvL7

3. Bob creates transaction Tx1 by putting 10 BTC into the multisig address

bitcoind sendtoaddress 3MxKEf2su6FGAUfCEAHreGFQvEYrfYNHvL7 10.0

7649b33b6d80f7b5c866fbdb413419e04223974b0a5d6a3ca54944f30474d2bf

4. Bob communicates the transaction id of Tx1 to Alice

5. Alice can see the P2SH transaction from transaction id provided by Bob

bitcoind getrawtransaction 7649b33b6d80f7b5c866fbdb413419e04223974b0a5d6a3ca54944f30474d2bf 1

{

“hex” :
“01000000013c0c37049cefb7d0754c716c1227e221f1b5cc9fdf7fc8e6aadd5ce6465fad32000000004a493046022100b4133
0548f320fcc282d72462656f80c0da64beb352f7fbbdf55d651674b5846022100cbef624c80302900e6c0e9b4bbb024cd072e5
4d7535c8a79a3ce9b36c304d7cc01ffffffff0100f2052a0100000017a914379ad9b7ba73bdc1e29e286e014d4e2e1f6884e38
700000000”,

“txid” : “7649b33b6d80f7b5c866fbdb413419e04223974b0a5d6a3ca54944f30474d2bf”,

“version” : 1,

“locktime” : 0,

“vin” : [

{

“txid” : “32ad5f46e65cddaae6c87fdf9fccb5f121e227126c714c75d0b7ef9c04370c3c”,

“vout” : 0,

“scriptSig” : {

“asm” :
“3046022100b41330548f320fcc282d72462656f80c0da64beb352f7fbbdf55d651674b5846022100cbef624c80302900e6c0e
9b4bbb024cd072e54d7535c8a79a3ce9b36c304d7cc01”,

“hex” :
“493046022100b41330548f320fcc282d72462656f80c0da64beb352f7fbbdf55d651674b5846022100cbef624c80302900e6c
0e9b4bbb024cd072e54d7535c8a79a3ce9b36c304d7cc01”

},

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

301 | P a g e

“sequence” : 4294967295

}

],

“vout” : [

{

“value” : 10.00000000,

“n” : 0,

“scriptPubKey” : {

“asm” : “OP_HASH160 379ad9b7ba73bdc1e29e286e014d4e2e1f6884e3 OP_EQUAL”,

“hex” : “a914379ad9b7ba73bdc1e29e286e014d4e2e1f6884e387”,

“reqSigs” : 1,

“type” : “scripthash”,

“addresses” : [

“2MxKEf2su6FGAUfCEAHreGFQvEYrfYNHvL7”

]

}

}

]

}

Alice is now convinced that Bob has paid 10 BTC in Tx1.

6. Alice creates a transaction Tx2 (the contract). Tx2 spends Tx1 and pays it back to Bob via the address he provided

in the first step.

a) Create raw transaction to spend Tx1

i.e. Alice creates a transaction that has following input & output:

Input: vout 0 from Tx1

Output: Bob’s BTC address, 10 BTC

bitcoind createrawtransaction
‘[{“txid”:”7649b33b6d80f7b5c866fbdb413419e04223974b0a5d6a3ca54944f30474d2bf”,”vout”:0}]’
‘{“mirQLRn6ciqa3WwJSSe7RSJNVfAE9zLkS5”:10}’

0100000001bfd27404f34449a53c6a5d0a4b972342e0193441dbfb66c8b5f7806d3bb349760000000000ffffffff01
00f2052a010000001976a914249604bc668da89a7d2d494b89fba47f529c52f788ac00000000

Above raw transaction has default sequence number (UINT_MAX) and lock time as 0.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

302 | P a g e

Alice needs to set lock time to some future date (after 1 July 2016). Hence, sequence number needs to be set

less than UNIT_MAX.

b) Modify the raw transaction above to set: sequence number = 0, lock time = 1 July 2016

Dissecting the raw transaction, we get:

01000000 version

01 input count

bfd27404f34449a53c6a5d0a4b972342e0193441dbfb66c8
b5f7806d3bb34976

previous output hash

00000000 previous output index

00 script length

ffffffff sequence number

01 output count

00f2052a01000000 output value

19 script length

76a914249604bc668da89a7d2d494b89fba47f529c52f788
ac

scriptPubKey

00000000 locktime

Setting the sequence number to 0:

Identify the bytes corresponding to sequence number & set all 4 bytes to 0.

0100000001bfd27404f34449a53c6a5d0a4b972342e0193441dbfb66c8b5f7806d3bb349760000000000ffffffff0100f2
052a010000001976a914249604bc668da89a7d2d494b89fba47f529c52f788ac00000000

0100000001bfd27404f34449a53c6a5d0a4b972342e0193441dbfb66c8b5f7806d3bb349760000000000000000000100f2
052a010000001976a914249604bc668da89a7d2d494b89fba47f529c52f788ac00000000

Setting the lock time to 1 July 2016:

Convert this date to Unix Epoch Time: 1435708800

Value in Hex: 55932D80

Replace the last 4 bytes of raw transaction with this new value.

0100000001bfd27404f34449a53c6a5d0a4b972342e0193441dbfb66c8b5f7806d3bb349760000000000000000000100f2
052a010000001976a914249604bc668da89a7d2d494b89fba47f529c52f788ac00000000

0100000001bfd27404f34449a53c6a5d0a4b972342e0193441dbfb66c8b5f7806d3bb349760000000000000000000100f2
052a010000001976a914249604bc668da89a7d2d494b89fba47f529c52f788ac55932D80

New raw transaction (Tx2) with updated sequence number and lock time:

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

303 | P a g e

0100000001bfd27404f34449a53c6a5d0a4b972342e0193441dbfb66c8b5f7806d3bb349760000000000000000000100f2
052a010000001976a914249604bc668da89a7d2d494b89fba47f529c52f788ac55932D80

7. Alice signs Tx2

bitcoind signrawtransaction
0100000001bfd27404f34449a53c6a5d0a4b972342e0193441dbfb66c8b5f7806d3bb349760000000000000000000100f2
052a010000001976a914249604bc668da89a7d2d494b89fba47f529c52f788ac55932D80

{

 “hex” :
“0100000001bfd27404f34449a53c6a5d0a4b972342e0193441dbfb66c8b5f7806d3bb3497600000000920048304502210
084470f4972aab95892e6871168fa0d8456a7e4f55cfc8786a5ffef289d9d312602206d048d4fa39fd987235ad025c0e2d
30ff4d6e7ab60ed5fb899952a3ef888cbf4014752210287f9169e265380a87cfd717ec543683f572db8b5a6d06231ff59c
43429063ae4210343947d178f20b8267488e488442650c27e1e9956c824077f646d6ce13a285d8452aeffffffff0100f20
52a010000001976a914249604bc668da89a7d2d494b89fba47f529c52f788ac00000000”,

 “complete” : false

}

8. Finally, the incomplete (half-signed) transaction is sent back to Bob. Bob checks that the contract is as expected

– that the coins will eventually come back to him – but, unless things are changed, only after 1 July 2016.

Because the sequence number is zero, the contract can be amended in future if both parties agree. The script in

the input isn’t finished though; there are only zeros where the user’s signature should be. He fixes that by

signing the contract and putting the new signature in the appropriate spot.

Bitcoind signrawtransaction
0100000001bfd27404f34449a53c6a5d0a4b972342e0193441dbfb66c8b5f7806d3bb349760000000092004830450221008447
0f4972aab95892e6871168fa0d8456a7e4f55cfc8786a5ffef289d9d312602206d048d4fa39fd987235ad025c0e2d30ff4d6e7
ab60ed5fb899952a3ef888cbf4014752210287f9169e265380a87cfd717ec543683f572db8b5a6d06231ff59c43429063ae421
0343947d178f20b8267488e488442650c27e1e9956c824077f646d6ce13a285d8452aeffffffff0100f2052a010000001976a9
14249604bc668da89a7d2d494b89fba47f529c52f788ac00000000

{

 “hex” :
“0100000001bfd27404f34449a53c6a5d0a4b972342e0193441dbfb66c8b5f7806d3bb3497600000000db00483045022100bb9
ef133361524477c4811b73f7b5093108f646d260dfdd066ea3a06589cf47f02206b91c5bfb091784b2dc62a71477d5e73a53c3
019b6e0b61a4888f24c991e930a0148304502210084470f4972aab95892e6871168fa0d8456a7e4f55cfc8786a5ffef289d9d3
12602206d048d4fa39fd987235ad025c0e2d30ff4d6e7ab60ed5fb899952a3ef888cbf4014752210287f9169e265380a87cfd7
17ec543683f572db8b5a6d06231ff59c43429063ae4210343947d178f20b8267488e488442650c27e1e9956c824077f646d6ce
13a285d8452aeffffffff0100f2052a010000001976a914249604bc668da89a7d2d494b89fba47f529c52f788ac00000000”,

 “complete” : true

}

9. Bob broadcasts Tx1. Then Tx2

bitcoind sendrawtransaction
0100000001bfd27404f34449a53c6a5d0a4b972342e0193441dbfb66c8b5f7806d3bb3497600000000db00483045022100bb9e
f133361524477c4811b73f7b5093108f646d260dfdd066ea3a06589cf47f02206b91c5bfb091784b2dc62a71477d5e73a53c30
19b6e0b61a4888f24c991e930a0148304502210084470f4972aab95892e6871168fa0d8456a7e4f55cfc8786a5ffef289d9d31

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

304 | P a g e

2602206d048d4fa39fd987235ad025c0e2d30ff4d6e7ab60ed5fb899952a3ef888cbf4014752210287f9169e265380a87cfd71
7ec543683f572db8b5a6d06231ff59c43429063ae4210343947d178f20b8267488e488442650c27e1e9956c824077f646d6ce1
3a285d8452aeffffffff0100f2052a010000001976a914249604bc668da89a7d2d494b89fba47f529c52f788ac00000000

35cdf0594ef0890703a8ede92f6fc80272d0b0b73d19d2a9af80dd17c11e188c

At this stage, neither Bob nor Alice can spend the 10 BTC independently. After 1 July 2016, the contract will be

complete & Bob will get the coins back in his address.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

305 | P a g e

9.7 Method to Create an IP Transaction
This point can be done in the scope of future development. Will need some researching activity.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

306 | P a g e

9.8 Method to Create a Message Transaction
Message Trx is transaction which is used for sending message via Block Chain. Message can be embedded

into Block Chain by using OP_RETURN opcode [2.2]. OP_RETURN outputs are specifically designed to allow

you to embed 40 bytes (320 bit) in a transaction.

Sequence of Steps: First, identify the input that you want to use for this purpose. Remember that all of the

amount will go to the miner. Then, identify the scriptPubKey from the raw transaction and replace it to

include OP_RETURN & the desired message/metadata.

Note: Calculating the length of each field: The length in raw transaction is denoted in hex.

While creating your own transaction, you need to convert the length in chars to length in bytes. Convert

this no. to hex by using decimal to hex converter (1 byte = 2 chars). Count the no. of characters in the

fields. Divide by 2. That will give you the no. of bytes. Convert this no. to hex.

Example: The scriptPubKey field has the value “76a91401720d2372616d6176fc16cac19378bdcb74b36e88ac”

No. of characters in Decimal: 50

No. of bytes in Decimal: 25 = 1×16¹+9×16⁰ (from hex)

Value in hex: 0x19

Steps:

1. Identify the input that needs to be converted to OP_RETURN output.

Use Message Transaction Management SubSystem (MTrxMSS) to get a list of UTXOs. Identify the ones that

can be used to generate the required output.

Output should be equivalent to the “listunspent” RPC output from FOS Daemon.

“listunspent” command get list of transactions that are unspent & can be used to create new transaction.

Example output from “listunspent” command:

[{

 “txid”: “99fa789df2a0aef57e705f66f3185f30ba71e544b246661c74c9f6ec22a86546”,

 “vout”: 1,

 “address”: “15VS9KdnP4Zna1MzF8F2jJ6WS1nKGoACqv”,

 “account”: “”,

 “scriptPubKey”: “76a91431412386e7fab5d1a5285fd17a6fb113db781eec88ac”,

 “amount”: 0.00500000,

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

307 | P a g e

 “confirmations”: 691

}]

2. Create a raw transaction

“createrawtransaction” command (bitcoind command): use the txid, vout, amount from above step to

create a raw transaction.

Command example: createrawtransaction

‘[{“txid”:”99fa789df2a0aef57e705f66f3185f30ba71e544b246661c74c9f6ec22a86546”, “vout”:1}]’

‘{“18eJcmJDXWigB3Bw6drAmCaz6H69F9Mz5”:0.0049}’

In this case, “18eJcmJDXWigB3Bw6drAmCaz6H69F9Mz5” is the destination address.

(Destination address will be overwritten in further steps.)

Output:

01000000014665a822ecf6c9741c6646b244e571ba305f18f3665f707ef5aea0f29d78fa990100000000ffffffff

01107a0700000000001976a91401720d2372616d6176fc16cac19378bdcb74b36e88ac00000000

The table below explains the raw transaction parts:

1 version 4 bytes 01000000

2 input count 1 byte 01

3 input previous output hash (big
endian, reversed)

32 bytes 4665a822ecf6c9741c6646b244e571ba305f18f3
665f707ef5aea0f29d78fa99

4 previous output index 4 bytes 01000000

5 script length 1 byte 00

6 scriptSig

7 sequence 4 bytes ffffffff

8 output count 1 byte 01

9 output
value

8 bytes (64 bit,

little endian)
107a070000000000

10 script length 1 byte 19

11
scriptPubKey

 1976a91401720d2372616d6176fc16cac19378b

dcb74b36e88ac

12 block lock time 4 bytes 00000000

Explanation:

1. Version: 4 bytes. Transaction data format version

2. No. of inputs: 1 byte. Number of Transaction inputs (incoming trxs)

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

308 | P a g e

3. Hash of the transaction from which we want to redeem (reverse order): 32 bytes. One thing to note

is that this value is stored as big endian, so, you’ll have to reverse the bytes around (Not the digits),

so, what normally would be: - 12345678 gets reversed in bytes, so: - 78 = first byte, 56 = second

byte, 34 = third byte, 12 = forth byte. Making 0x78563412 from 0x1234678.

4. Output index we want to redeem from the transaction: 4 bytes

5. Length of the scriptSig: 1 byte.

6. Actual scriptSig (equal to length in previous bytes).

7. Default sequence ffffffff: 4 bytes.

8. No. of outputs (outgoing trxs) in the new transaction: 1 byte.

9. Amount to be redeemed (64 bit integer, little-endian): 8 bytes.

10. Length of the scriptPubKey: 1 byte.

11. Actual script (equal to length in previous bytes)

12. Lock time: 4 bytes – 00000000. Block height or timestamp when transaction is final.

3. Identify scriptPubKey

Get the scriptPubKey from the raw transaction:

01000000014665a822ecf6c9741c6646b244e571ba305f18f3665f707ef5aea0f29d78fa990100000000ffffffff

01107a0700000000001976a91401720d2372616d6176fc16cac19378bdcb74b36e88ac00000000

scriptPubKey = 1976a91401720d2372616d6176fc16cac19378bdcb74b36e88ac

We need to convert the above scriptPubKey to suit our aim (i.e. embed OP_RETURN message/metadata)

The first byte (19) means the length of it, in this case, 25 bytes long as 0x19 means 25 in decimal (Not

including itself, 76a91401720d2372616d6176fc16cac19378bdcb74b36e88ac -> No. of characters = 50 ->

No. of bytes = 25).

Hex = 19

Decimal= 1×16¹+9×16⁰ = 25

Binary = 11001

Decimal= 1×2⁴+1×2³+0×2²+0×2¹+1×2⁰ = 25

Removing the length, we get:

76a91401720d2372616d6176fc16cac19378bdcb74b36e88ac

First byte denotes the opcode.

0x76 = OP_DUP. But we want OP_RETURN. So, let’s create our own signature.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

309 | P a g e

4. Create our own scriptPubKey for opcode OP_RETURN

• Message to embed: “Testing OP_RETURN”

• Converting the message to hex, we get: 54657374696e67204f505f52455455524e

So basically, we want: an OP_RETURN (0x6a), then the above hex.

• Hence, format of our scriptPubKey will be:

[OP_RETURN hex][length of message in hex][message in hex]

- OP_RETURN hex: 0x6a

- the length of our message in hex: 54657374696e67204f505f52455455524e-> No. of characters = 34

-> No. of bytes = 17 = 1×16¹+1×16⁰, so, hex 0x11

- and then the message in hex: 54657374696e67204f505f52455455524e

Result: 6a1154657374696e67204f505f52455455524e

• Now we just update the length to being the actual length (in this case

6a1154657374696e67204f505f52455455524e -> No. of characters = 38 -> No. of bytes = 19 -> 19 in hex =

1×16¹+3×16⁰, so hex 0x13):-

Result: 136a1154657374696e67204f505f52455455524e

• Add it back to the original transaction:-

01000000014665a822ecf6c9741c6646b244e571ba305f18f3665f707ef5aea0f29d78fa990100000000ffff

ffff01107a070000000000136a1154657374696e67204f505f52455455524e00000000

Above steps will create OP_RETURN metadata and embed the hex data in the Block Chain. The

transaction will be unspendable. All the amount from the chosen input transaction will go to the miner.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

310 | P a g e

9.9 Ways to Create Open Assets Transactions
This point can be done in the scope of future development. Will need some researching activity.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

311 | P a g e

10. Intelligent Daemon System Class and

Sequence Diagrams
Under construction…

10.1 Single-sig Transaction Management SubSystem Diagrams
Under construction…

10.2 Accounting Transaction Management SubSystem Diagrams
This point can be done in the scope of future development. Will need some researching activity.

10.3 Bank Transaction Management SubSystem Diagrams
This point can be done in the scope of future development. Will need some researching activity.

10.4 Exchange Transaction Management SubSystem Diagrams
This point can be done in the scope of future development. Will need some researching activity.

10.5 Message Transaction Management SubSystem Diagrams
This point can be done in the scope of future development. Will need some researching activity.

10.6 Contracts Management SubSystem Diagrams
This point can be done in the scope of future development. Will need some researching activity.

10.7 Monitoring System Diagrams
Under construction …

10.8 Diagrams for Wrapper of DmnCC
Under construction …

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

312 | P a g e

10.9 Shared Libraries Class and Sequence Diagrams
10.9.1 Common Ware API
Under construction …

10.9.2 4S API
Under construction …

10.9.3 ECDSA API
Under construction …

10.9.4 Mnemonic Code Generator API
9 Under construction …

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

313 | P a g e

11. Integration with External Systems
11.1 Interfaces
“Intelligent Daemon System” (IntDS) will provide restful interfaces to integrate with other external systems

(eWallet web app., BTC Accounting web app., Trading system, other Btc bank systems, etc.).

REST’s client–server separation of concerns simplifies component implementation, reduces the complexity

of connector semantics, improves the effectiveness of performance tuning, and increases the scalability of

pure server components. Layered system constraints allow intermediaries—proxies, gateways, and

firewalls—to be introduced at various points in the communication without changing the interfaces

between components, thus allowing them to assist in communication translation or improve performance

via large-scale, shared caching. REST enables intermediate processing by constraining messages to be self-

descriptive: interaction is stateless between requests, standard methods and media types are used to

indicate semantics and exchange information, and responses explicitly indicate cacheability.

The entry point to IntDS is “Transactions Management System” (STrxMSS) therefore all the API provided by

STrxMSS are public. The API provided by Daemon Core System is private and used by STrxMSS and

Monitoring System only. The description of public API provided by STrxMSS is described in

Intelligent Daemon System Interfaces”

Under construction…

11.2 DBs Mapping Recommendations

Under construction…

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

314 | P a g e

Appendix A – Transaction Statuses
Status

ID
Status Description

1 Confirmed Transaction was confirmed in the Block Chain.

2 Pending Transaction was issued into Block Chain and is awaiting confirmation

3 In Progress Transaction was injected into iDaemon system but was not issued into Block
Chain

4 Cancelled Transaction was cancelled in the iDaemon system.

5 Rejected Transaction was rejected in the Block Chain.

6 Unknown Status is not recognized by iDaemon system

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

315 | P a g e

Appendix B – Transaction Types
The value of the column “Type of Script Pairs” is given from Appendix E, column “Type Title”.

Type Type of Script Pairs Description

Contract Transactions which use the decentralized
Bitcoin system to enforce financial agreements
[2.7].

A distributed contract is a method of using
Bitcoin to form agreements with people via
the block chain.

Financial Single-
sig Trxs

Standard Transaction to
Single-sig Bitcoin address
(P2PKH)

Sending some Bitcoins from the Single-sig Btc
address to the Single-sig Btc address. All Inputs
and Outputs of this Trx should correspond to
P2PKH type

Financial Multi-
sig Trxs

M-of-N Multi-signature
Transaction (P2SH)

Complex/Multi-signature transaction is a
transaction that has as one of its Inputs a
Multi-sig Btc address. Sending some Bitcoins
from the Multi-sig Btc Address.

Multi-sig addresses are used to make it so
multiple keys owned by separate entities are
needed to move the bitcoins in an address.

IP Trxs P2PK Sending bitcoins to an IP address. Sending
directly to in PubKey [2.10].

Message Trxs Provably
Unspendable/Prunable
Outputs

Transactions which are used for sending some
metadata or message

Open Assets Trxs Open Assets transactions can be used to issue
new assets, or transfer ownership of assets
[2.6].

Strange -- Any Unusual transactions

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

316 | P a g e

Appendix C – Opcode types
Type Description

Constants When talking about scripts, these value-pushing words are usually omitted.

Flow control Conditional flow control opcodes.

Stack Opcodes used to manipulate the stack.

Splice Opcodes used for string splice operations.

Bitwise logic Opcodes used for binary arithmetic and boolean logical operations.

Arithmetic Note: Arithmetic inputs are limited to signed 32-bit integers, but may
overflow their output.

If any input value for any of these commands is longer than 4 bytes, the
script must abort and fail. If any opcode marked as disabled is present in a
script – it must also abort and fail.

Crypto Cryptographic and hashing opcodes.

Pseudo-words These words are used internally for assisting with transaction matching.
They are invalid if used in actual scripts.

Reserved words Any opcode not assigned is also reserved. Using an unassigned opcode
makes the transaction invalid.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

317 | P a g e

Appendix D – Opcodes [2.2]
Word Opcode Hex Input Output Description

Constants:

OP_0,
OP_FALSE

0 0x00 Nothing.
(empty
value)

An empty array of bytes is
pushed onto the stack. (This is
not a no-op: an item is added to
the stack.)

N/A 1-75 0x01-0x4b (special) data
The next opcode bytes is data
to be pushed onto the stack

OP_PUSHDA
TA1

76 0x4c (special) data
The next byte contains the
number of bytes to be pushed
onto the stack.

OP_PUSHDA
TA2

77 0x4d (special) data
The next two bytes contain the
number of bytes to be pushed
onto the stack.

OP_PUSHDA
TA4

78 0x4e (special) data
The next four bytes contain the
number of bytes to be pushed
onto the stack.

OP_1NEGATE 79 0x4f Nothing. -1
The number -1 is pushed onto
the stack.

OP_1,
OP_TRUE

81 0x51 Nothing. 1
The number 1 is pushed onto
the stack.

OP_2-OP_16 82-96 0x52-0x60 Nothing. 2-16
The number in the word name
(2-16) is pushed onto the stack.

Flow control:

OP_NOP 97 0x61 Nothing Nothing Does nothing.

OP_IF 99 0x63 <expression> if
[statements] [else
[statements]]* endif

If the top stack value is not 0,
the statements are executed.
The top stack value is removed.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

318 | P a g e

OP_NOTIF 100 0x64 <expression> if
[statements] [else
[statements]]* endif

If the top stack value is 0, the
statements are executed. The
top stack value is removed.

OP_ELSE 103 0x67 <expression> if
[statements] [else
[statements]]* endif

If the preceding OP_IF or
OP_NOTIF or OP_ELSE was not
executed then these statements
are and if the preceding OP_IF
or OP_NOTIF or OP_ELSE was
executed then these statements
are not.

OP_ENDIF 104 0x68 <expression> if
[statements] [else
[statements]]* endif

Ends an if/else block. All blocks
must end, or the transaction is
invalid. An OP_ENDIF without
OP_IF earlier is also invalid.

OP_VERIFY 105 0x69 True /
false

Nothing /
False

Marks transaction as invalid if
top stack value is not true.

OP_RETURN 106 0x6a Nothing Nothing Marks transaction as invalid.

Stack:

OP_TOALTST
ACK

701 0x6b x1 (alt)x1 Puts the input onto the top of
the alt stack. Removes it from
the main stack.

OP_FROMAL
TSTACK

108 0x6c (alt)x1 x1 Puts the input onto the top of
the main stack. Removes it from
the alt stack.

OP_IFDUP 115 0x73 x x / x x If the top stack value is not 0,
duplicate it.

OP_DEPTH 116 0x74 Nothing <Stack
size>

Puts the number of stack items
onto the stack.

OP_DROP 117 0x75 x Nothing Removes the top stack item.

OP_DUP 118 0x76 x x x Duplicates the top stack item.

OP_NIP 119 0x77 x1 x2 x2 Removes the second-to-top
stack item.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

319 | P a g e

OP_OVER 120 0x78 x1 x2 x1 x2 x1 Copies the second-to-top stack
item to the top.

OP_PICK 121 0x79 xn … x2
x1 x0
<n>

xn … x2 x1
x0 xn

The item n back in the stack is
copied to the top.

OP_ROLL 122 0x7a xn … x2
x1 x0
<n>

… x2 x1 x0
xn

The item n back in the stack is
moved to the top.

OP_ROT 123 0x7b x1 x2 x3 x2 x3 x1 The top three items on the
stack are rotated to the left.

OP_SWAP 124 0x7c x1 x2 x2 x1 The top two items on the stack
are swapped.

OP_TUCK 125 0x7d x1 x2 x2 x1 x2 The item at the top of the stack
is copied and inserted before
the second-to-top item.

OP_2DROP 109 0x6d x1 x2 Nothing Removes the top two stack
items.

OP_2DUP 110 0x6e x1 x2 x1 x2 x1
x2

Duplicates the top two stack
items.

OP_3DUP 111 0x6f x1 x2 x3 x1 x2 x3
x1 x2 x3

Duplicates the top three stack
items.

OP_2OVER 112 0x70 x1 x2 x3
x4

x1 x2 x3
x4 x1 x2

Copies the pair of items two
spaces back in the stack to the
front.

OP_2ROT 113 0x71 x1 x2 x3
x4 x5 x6

x3 x4 x5
x6 x1 x2

The fifth and sixth items back
are moved to the top of the
stack.

OP_2SWAP 114 0x72 x1 x2 x3
x4

x3 x4 x1
x2

Swaps the top two pairs of
items.

Splice:

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

320 | P a g e

OP_CAT 126 0x7e x1 x2 out Concatenates two strings.
Disabled.

OP_SUBSTR 127 0x7f in begin
size

out Returns a section of a string.
Disabled.

OP_LEFT 128 0x80 in size out Keeps only characters left of the
specified point in a string.
Disabled.

OP_RIGHT 129 0x81 in size out Keeps only characters right of
the specified point in a string.
Disabled.

OP_SIZE 130 0x82 in in size Pushes the string length of the
top element of the stack
(without popping it).

Bitwise logic:

OP_INVERT 131 0x83 in out Flips all of the bits in the input.
Disabled.

OP_AND 132 0x84 x1 x2 out Boolean and between each bit
in the inputs. Disabled.

OP_OR 133 0x85 x1 x2 out Boolean or between each bit in
the inputs. Disabled.

OP_XOR 134 0x86 x1 x2 out Boolean exclusive or between
each bit in the inputs. Disabled.

OP_EQUAL 135 0x87 x1 x2 True /
false

Returns 1 if the inputs are
exactly equal, 0 otherwise.

OP_EQUALVE
RIFY

136 0x88 x1 x2 True /
false

Same as OP_EQUAL, but runs
OP_VERIFY afterward.

Arithmetic:

OP_1ADD 139 0x8b in out 1 is added to the input.

OP_1SUB 140 0x8c in out 1 is subtracted from the input.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

321 | P a g e

OP_2MUL 141 0x8d in out The input is multiplied by 2.
Disabled.

OP_2DIV 142 0x8e in out The input is divided by 2.
Disabled.

OP_NEGATE 143 0x8f in out The sign of the input is flipped.

OP_ABS 144 0x90 in out The input is made positive.

OP_NOT 145 0x91 in out If the input is 0 or 1, it is flipped.
Otherwise the output will be 0.

OP_0NOTEQ
UAL

146 0x92 in out Returns 0 if the input is 0. 1
otherwise.

OP_ADD 147 0x93 a b out a is added to b.

OP_SUB 148 0x94 a b out b is subtracted from a.

OP_MUL 149 0x95 a b out a is multiplied by b. disabled.

OP_DIV 150 0x96 a b out a is divided by b. disabled.

OP_MOD 151 0x97 a b out Returns the remainder after
dividing a by b. disabled.

OP_LSHIFT 152 0x98 a b out Shifts a left b bits, preserving
sign. Disabled.

OP_RSHIFT 153 0x99 a b out Shifts a right b bits, preserving
sign. Disabled.

OP_BOOLAN
D

154 0x9a a b out If both a and b are not 0, the
output is 1. Otherwise 0.

OP_BOOLOR 155 0x9b a b out If a or b is not 0, the output is 1.
Otherwise 0.

OP_NUMEQ
UAL

156 0x9c a b out Returns 1 if the numbers are
equal, 0 otherwise.

OP_NUMEQ
UALVERIFY

157 0x9d a b out Same as OP_NUMEQUAL, but
runs OP_VERIFY afterward.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

322 | P a g e

OP_NUMNO
TEQUAL

158 0x9e a b out Returns 1 if the numbers are
not equal, 0 otherwise.

OP_LESSTHA
N

159 0x9f a b out Returns 1 if a is less than b, 0
otherwise.

OP_GREATER
THAN

160 0xa0 a b out Returns 1 if a is greater than b,
0 otherwise.

OP_LESSTHA
NOREQUAL

161 0xa1 a b out Returns 1 if a is less than or
equal to b, 0 otherwise.

OP_GREATER
THANOREQU
AL

162 0xa2 a b out Returns 1 if a is greater than or
equal to b, 0 otherwise.

OP_MIN 163 0xa3 a b out Returns the smaller of a and b.

OP_MAX 164 0xa4 a b out Returns the larger of a and b.

OP_WITHIN 165 0xa5 x min
max

out Returns 1 if x is within the
specified range (left-inclusive), 0
otherwise.

Crypto:

OP_RIPEMD1
60

166 0xa6 in hash
The input is hashed using
RIPEMD-160.

OP_SHA1 167 0xa7 in hash
The input is hashed using SHA-
1.

OP_SHA256 168 0xa8 in hash
The input is hashed using SHA-
256.

OP_HASH160 169 0xa9 in hash
The input is hashed twice: first
with SHA-256 and then with
RIPEMD-160.

OP_HASH256 170 0xaa in hash
The input is hashed two times
with SHA-256.

OP_CODESEP
ARATOR

171 0xab Nothing Nothing All of the signature checking
words will only match

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

323 | P a g e

signatures to the data after the
most recently-executed
OP_CODESEPARATOR.

OP_CHECKSI
G

172 0xac
sig
pubkey

True /
false

The entire transaction’s
outputs, inputs, and script (from
the most recently-executed
OP_CODESEPARATOR to the
end) are hashed. The signature
used by OP_CHECKSIG must be
a valid signature for this hash
and public key. If it is, 1 is
returned, 0 otherwise.

OP_CHECKSI
GVERIFY

173 0xad
sig
pubkey

True /
false

Same as OP_CHECKSIG, but
OP_VERIFY is executed
afterward.

OP_CHECKM
ULTISIG

174 0xae

x sig1
sig2 …
<number
of
signatur
es> pub1
pub2
<number
of public
keys>

True /
False

Compares the first signature
against each public key until it
finds an ECDSA match. Starting
with the subsequent public key,
it compares the second
signature against each
remaining public key until it
finds an ECDSA match. The
process is repeated until all
signatures have been checked
or not enough public keys
remain to produce a successful
result. All signatures need to
match a public key. Because
public keys are not checked
again if they fail any signature
comparison, signatures must be
placed in the scriptSig using the
same order as their
corresponding public keys were
placed in the scriptPubKey or
redeemScript. If all signatures
are valid, 1 is returned, 0
otherwise. Due to a bug, one

https://en.bitcoin.it/wiki/OP_CHECKSIG
https://en.bitcoin.it/wiki/OP_CHECKSIG

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

324 | P a g e

extra unused value is removed
from the stack.

OP_CHECKM
ULTISIGVERIF
Y

175 0xaf

x sig1
sig2 …
<number
of
signatur
es> pub1
pub2 …
<number
of public
keys>

True /
False

Same as OP_CHECKMULTISIG,
but OP_VERIFY is executed
afterward.

Pseudo-words:

OP_PUBKEYH
ASH

253 0xfd -- -- Represents a public key hashed
with OP_HASH160.

OP_PUBKEY 254 0xfe -- -- Represents a public key
compatible with OP_CHECKSIG.

OP_INVALID
OPCODE

255 0xff -- -- Matches any opcode that is not
yet assigned.

Reserved words:

OP_RESERVE
D

80 0x50 -- --
When used… Transaction is invalid

unless 324ubscript in an

unexecuted OP_IF branch

OP_VER 98 0x62 -- --
When used… Transaction is invalid

unless 324ubscript in an

unexecuted OP_IF branch

OP_VERIF 101 0x65 -- --
When used… Transaction is invalid

even when 324ubscript in an

unexecuted OP_IF branch

OP_VERNOTI
F

102 0x66 -- --
When used… Transaction is invalid

even when 324ubscript in an

unexecuted OP_IF branch

OP_RESERVE
D1

137 0x89 -- --
When used… Transaction is invalid

unless 324ubscript in an

unexecuted OP_IF branch

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

325 | P a g e

OP_RESERVE
D2

138 0x8a -- --
When used… Transaction is invalid

unless 325ubscript in an

unexecuted OP_IF branch

OP_NOP1-
OP_NOP10

176-185 0xb0-0xb9 -- --
When used… The word is ignored.

Does not mark transaction as

invalid.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

326 | P a g e

Appendix E – Types of Script Pairs
ID Script

Type
Title

Script
Type

Output’s
Script
Title

Output’s
Script
formula

(send)

Input’s
Script
Title

Input’s
Script
formula
(claim)

Description

1
Pay-
to-

Public
-Key-
Hash

P2PKH scriptPu
bKey

OP_DUP
OP_HASH
160
[pubKeyH
ash]
OP_EQUA
LVERIFY
OP_CHEC
KSIG

scriptSi
g

[sig][pub
Key]

Scripts for Standard Transaction
sending money to a Single-sig
Bitcoin address and claiming
money sent in this way.

A Bitcoin address is only a hash,
so the sender can’t provide a
full public key in scriptPubKey.
When redeeming coins that
have been sent to a Bitcoin
address, the recipient provides
both the signature and the
public key. The script verifies
that the provided public key
does hash to the hash in
scriptPubKey, and then it also
checks the signature against the
public key.

2 Pay-
to-

Public
-Key

(Obso
lete)

P2PK [pubKey]
OP_CHEC
KSIG

 [sig] Now most often seen in

coinbase transactions.

Standard script assigning newly

generated coins to a Bitcoin

address and claiming these

coins.

This is also used for transactions

to an IP address.

3 Data
Outp

ut
(Prov
ably
Unsp

OP_RE
TURN

 OP_RETU
RN {zero
or more
ops as
metadata,

 --- OP_RETURN immediately marks
the script as invalid,
guaranteeing that no scriptSig
exists that could possibly spend
that output. Thus the output
can be immediately pruned

https://en.bitcoin.it/wiki/Address

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

327 | P a g e

enda
ble/

Pruna
ble

Outp
uts)

message
etc.}

from the UTXO set even if it has
not been spent.

4 Pay-
to-

Script
-Hash

P2SH OP_HASH
160
[hashOfSc
ript]
OP_EQUA
L

Note:

[hashOfScript

] is 20-byte-

hash-value

 [signatur
es as
required
by
script][s
erialized
script]

Scripts for M-of-N Multi-
signature Transaction. Standard
script sending money to a script
instead of a Bitcoin address
(P2SH, BIP 16). The script must
be one of the other standard
output scripts.

The scriptPubKey in the funding
transaction is script which
ensures that the script supplied
in the redeeming transaction
hashes to the script used to
create the address. In the
scriptSig, ‘signatures’ refers to
any script which is sufficient to
satisfy the following serialized
script.

 OP_SMAL
LINT1
[pubKey][
pubKey][p
ubKey]
OP_SMAL
LINT2
OP_CHEC
KMULTISI
G

 OP_0
[sig][sig][
sig]

Standard script requiring
multiple signatures to claim
coins (BIP 11).

5 [message]
OP_DROP
[pubKey]
OP_CHEC
KSIG

 [sig] Sample non-standard
transaction including a
message.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

328 | P a g e

6 Trans
action
puzzl

e

 OP_HASH
256
6fe28c0ab
6f1b372c1
a6a246ae
63f74f931
e8365e15
a089c68d
61900000
00000
OP_EQUA
L

 --- Transaction
a4bfa8ab6435ae5f25dae9d89e
4eb67dfa94283ca751f393c1ddc
5a837bbc31b is an interesting
puzzle. To spend the transaction
you need to come up with some
data such that hashing the data
twice results in the given hash.

This transaction was

successfully spent by

09f691b2263260e71f363d1db5

1ff3100d285956a40cc0e4f8c8c

2c4a80559b1. The required

data happened to be the

Genesis block, and the given

hash was the genesis block

hash. Note that while

transactions like this are fun,

they are not secure, because

they do not contain any

signatures and thus any

transaction attempting to spend

them can be replaced with a

different transaction sending

the funds somewhere else.

https://en.bitcoin.it/wiki/Genesis_block

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

329 | P a g e

Appendix F – Script Parameters Names
Parameter Name Description

[pubKeyHash] A Part of Btc address: RIPEMD160(SHA256(PubKey))

[pubKey] Public Key

[script] Script

[scriptHash] Script hash

[redeemScript] 20-byte hash of redeem script

[sig] Signature

[message] String of message

[hashOfScript] Hash of Script

[data] Any data

PUSHDATA The next byte contains the number of bytes to be pushed onto the stack.

6fe28c0ab6f1b37
2c1a6a246ae63f7
4f931e8365e15a
089c68d6190000

0000

Transaction puzzle data. Hash

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

330 | P a g e

Appendix G – Value Conversion
Value Conversion

big-endian
convention

Stores data big-end first. When looking at multiple bytes, the first byte
(lowest address) is the biggest.

The resulting sequence q is converted to an integer value using the big-

endian convention: If input bits are called b_0 (leftmost) to b_(qLen-1)
(rightmost), then the resulting value is

b_0 * 2(qLen-1) + b_1 * 2(qLen-2) + … + b_(qLen-1) * 20
where qLen is the binary length of q

Example: Decimal: 1025
16 bit representation in memory: Hex: 0x0401, Binary: 00000100 00000001
32 bit representation in memory: Hex: 0x00000401,
Binary: 00000000 00000000 00000100 00000001

little-endian
convention

Stores data little-end first. When looking at multiple bytes, the first byte is
smallest.

The resulting sequence q is converted to an integer value using the little-

endian convention: If input bits are called b_0 (leftmost) to b_(qLen-1)
(rightmost), then the resulting value is

b_0 * 20 + b_1 * 21 + … b_(qLen-2) * 2(qLen-2) + b_(qLen-1) *
2(qLen-1)
where qLen is the binary length of q

Example: Decimal: 1025
16 bit representation in memory: Hex: 0x0104, Binary: 00000001 00000100
32 bit representation in memory: Hex: 0x01040000,
Binary: 00000001 00000100 00000000 00000000

reversed bytes
operation

You’ll have to reverse the bytes around (Not the digits).

Example:

12345678 gets reversed in bytes, so: - 78 = first byte 56 = second byte 34 =
third byte 12 = forth byte

Making 0x78563412 from 0x1234678

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

331 | P a g e

Note that the bytes representing the entire number are swapped. Also note
that only the bytes are reversed and the bits within the byte are NOT
reversed.

1 Btc 108 = 100,000,000 Satoshi

1 byte A sequence pf 8 bits (or 2 chars in the byte string). A bit has two values: on or
off, 1 or 0. The “leftmost” bit in a byte is the biggest.

Example: the binary sequence 00001001 is the decimal number 9.

00001001 = (23 + 20 = 8 + 1 = 9). Bits are numbered from right-to-left.

Bit 0 is the rightmost and the smallest; bit 7 is leftmost and largest in this
example.

1 Satoshi 1E-8 = 10-8

VarInt Integer can be encoded depending on the represented value to save space.
Variable length integers always precede an array/vector of a type of data
that may vary in length. Longer numbers are encoded in little endian.

Value in hex Value in dec Storage
length in
bytes

Format

< 0xFD < 253 1 uint8_t

<= 0xFFFF <= 65535 3 0xFD followed by the
length as uint16_t

<= 0xFFFF FFFF <= 4294967295 5 0xFE followed by the
length as uint32_t

- - 9 0xFF followed by the
length as uint64_t

// testValue

unsigned long long testValue = 0xFFFFFFFFFFFFFFFF; // 18446744073709551615

// 1 byte -> [0-255] or [0x00-0xFF]

uint8_t number8 = testValue; // 255

unsigned char numberChar = testValue; // 255

// 2 bytes -> [0-65535] or [0x0000-0xFFFF]

uint16_t number16 = testValue; // 65535

unsigned short numberShort = testValue; // 65535

// 4 bytes -> [0-4294967295] or [0x00000000-0xFFFFFFFF]

uint32_t number32 = testValue; // 4294967295

unsigned int numberInt = testValue; // 4294967295

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

332 | P a g e

// 8 bytes -> [0-18446744073709551615] or [0x0000000000000000-0xFFFFFFFFFFFFFFFF]

uint64_t number64 = testValue; // 18446744073709551615

unsigned long long numberLongLong = testValue; // 18446744073709551615

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

333 | P a g e

Appendix H – Binary <–> Decimal

Conversions
Binary to Decimal:

Binary base 2 Decimal base 10 Formula

0 0 02 = 0·20 = 010

1 1 12 = 1·20 = 110

10 2 102 = 1·21+0·20 = 210

11 3 112 = 1·21+1·20 = 310

100 4 1002 = 1·22 +0·21+0·20 = 410

101 5 1012 = 1·22 +0·21+1·20 = 510

110 6 1102 = 1·22 +1·21+0·20 = 610

111 7 1112 = 1·22 +1·21+1·20 = 710

1000 8 10002 = 1·23 +0·22 +0·21+0·20 = 810

1001 9 10012 = 1·23 +0·22 +0·21+1·20 = 910

1010 10 10102 = 1·23 +0·22 +1·21+0·20 = 1010

1011 11 10112 = 1·23 +0·22 +1·21+1·20 = 1110

1100 12 11002 = 1·23 +1·22 +0·21+0·20 = 1210

1101 13 11012 = 1·23 +1·22 +0·21+1·20 = 1310

1110 14 11102 = 1·23 +1·22 +1·21+0·20 = 1410

1111 15 11102 = 1·23 +1·22 +1·21+1·20 = 1510

10000 16 100002 = 1·24 +0·23 + 0·22 +0·21+0·20 = 1610

100000 32 1000002 = 1·25 +0·24 +0·23 + 0·22 +0·21+0·20 = 3210

1000000 64 10000002 = 1·26 +0·25 +0·24 +0·23 + 0·22 +0·21+0·20 = 6410

10000000 128
100000002 = 1·27 +0·26 +0·25 +0·24 +0·23 + 0·22 +0·21+0·20 =
12810

100000000 256
1000000002 = 1·28+0·27+0·26+0·25+0·24+0·23+ 0·22+0·21+0·20

=25610

The decimal number is equal to the sum of powers of 2 of the binary number’s ‘1’ digits place.

Example: 1110012 = 1·25+1·24+1·23+0·22+0·21+1·20 = 5710

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

334 | P a g e

Decimal to Binary:

“Divide by 2” algorithm is used to convert integer values into binary numbers. “Divide by 2” algorithm starts
a conversion with an integer greater than 0. A simple iteration then continually divides the decimal number
by 2 and keeps track of the remainder. The first division by 2 gives information as to whether the value is
even or odd. An even value will have a remainder of 0. It will have the digit 0 in the ones place. An odd
value will have a remainder of 1 and will have the digit 1 in the ones place. The binary number is a
sequence of digits, where the first computed remainder be the last digit in the sequence.

Example:

322/2 = 116 + 1 -> rem 1

116/2 = 58 + 0 -> rem 0

58/2 = 29 + 0 -> rem 0

29/2 = 14 + 1 -> rem 1

14/2 = 7 + 0 -> rem 0

7/2 = 3 + 1 -> rem 1

3/2 = 1 + 1 -> rem 1

1/2 = 0 + 1 -> rem 1

Result: 111010012 = 32210

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

335 | P a g e

Appendix I – Hex <–> Decimal Conversions
Hex to Decimal:

Hex base 16 Decimal base 10

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

A 10

B 11

C 12

D 13

E 14

F 15

10 16

20 32

30 48

40 64

50 80

60 96

70 112

80 128

90 144

A0 160

B0 176

C0 192

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

336 | P a g e

D0 208

E0 224

F0 240

100 256

200 512

300 768

400 1024

A regular decimal number is the sum of the digits multiplied with 10n.

Example #1

137 in base 10 is equal to each digit multiplied with its corresponding 10n:

13710 = 1×102+3×101+7×100 = 100+30+7

Hex numbers are read the same way, but each digit counts 16n instead of 10n. Multiply each digit of the
hex number with its corresponding 16n.

Example #2

3B in base 16 is equal to each digit multiplied with its corresponding 16n:

3B16 = 3×161+11×160 = 48+11 = 59

Example #3

E7A9 in base 16 is equal to each digit multiplied with its corresponding 16n:

E7A916 = 14×163+7×162+10×161+9×160 = 57344+1792+160+9 = 59305

Decimal to Hex:

For decimal number x:

9. Get the highest power of 16 that is less than the decimal number x:

16n < x, (n=1,2,3,…)

10. The high hex digit is equal to the integer if the decimal number x divided by the highest power of 16

that is smaller than x:

dn = int(x / 16n)

3. Calculate the difference Δ of the number x and the hex digit dn times the power of 16, 16n:

Δ = x – dn × 16n
4. Repeat step #1 with the difference result until the result is 0.

Example: Convert x=603 to hex:

Step 1: n=2, 162=256 < 603

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

337 | P a g e

n=3, 163=4096 > 603

So n = 2
Step 2: d2 = int(603 / 162) = 2

Step 3: Δ = 603 – 2×162 = 91
Repeat step #1 with the difference result until the result is 0.

N = 1, x = Δ = 91

d1 = int(91 / 161) = 5

Δ = 91 – 5×161 = 11

n = 0, x = Δ = 11

d0 = int(11 / 160) = 1110 = B16

Δ = 11 – 11×160 = 0

(d2d1d0) = 25B
Result:
x = 60310 = 25B16

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

338 | P a g e

Appendix J – Common prefixes for version

bytes

Type Version prefix (hex) Base58 result prefix

Bitcoin Address 0x00 1

Pay-to-Script-Hash Address 0x05 3

Bitcoin Testnet Address 0x6F m or n

Private Key WIF 0x80 5, K or L

BIP38 Encrypted Private Key 0x0142 6P

BIP32 Extended Public Key 0x0488B21E xpub

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

339 | P a g e

Appendix K – Sighash Type codes [2.22]
Sighash Type Value Description

SIGHASH_ALL 0x00000001 This type is default. Type signs all the inputs and
outputs, protecting everything except the
signature scripts against modification.

SIGHASH_NONE 0x00000002 Type signs all of the Inputs but none of the
Outputs, allowing anyone to change where the
satoshis are going unless other signatures using
other signature hash flags protect the outputs.

SIGHASH_SINGLE 0x00000003 Type code the only Output signed is the one
corresponding to this Input (the Output with the
same output index number as this Input),
ensuring nobody can change your part of the
transaction but allowing other signers to change
their part of the transaction. The corresponding
Output must exist or the value “1” will be signed,
breaking the security scheme. This Input, as well
as other Inputs, are included in the signature. The
sequence numbers of other Inputs are not
included in the signature, and can be updated.

SIGHASH_ANYONECANPAY 0x00000080 1. The txCopy input vector is resized to a length
of one.

2. The 339ubscript (lead in by its length as a var-
integer encoded!) is set as the first and only
member of this vector.

Think of this as “Let other people add inputs to
this transaction, I don’t care where the rest of the
bitcoins come from.”

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

340 | P a g e

Appendix L – IntDS Error Codes
See SubSystem Abbreviations in the start of document: “Acronyms and Abbreviations of the Current Document”.

ID Error Code SubSystem
Abbreviation

Error Description

1 Balance calculation
error

STrxMSS STrxMSS error in the process of Wallet
balance calculation.

2 Wallet creation error STrxMSS STrxMSS error in the process of new Wallet
creation.

3 Wallet was not found STrxMSS STrxMSS can not find Wallet or error was
generated in this process.

4 Wallet signature
validation error

STrxMSS STrxMSS error in the process of Wallet
signature validation.

5 Status was not found STrxMSS STrxMSS can not find transaction status or
error was generated in this process.

6 Transaction creation
error

STrxMSS STrxMSS error in the process of new
transaction creation.

7 Transaction send
error

STrxMSS STrxMSS error in the sending of transaction
to blockchain

8 Error of Temp
Transaction deleting

STrxMSS STrxMSS error in the deleting of temporary
transaction data

9 Error of Transferring
Funds

STrxMSS STrxMSS error in the process of transferring
Wallet dependencies to another Wallet

10 STrxMSS error STrxMSS STrxMSS error

11 Trx data was not
found

STrxMSS STrxMSS can not find transaction data or
error was generated in this process.

12 Inbound Trx was not
found for Btc address

STrxMSS STrxMSS can not find Inbound transaction
for given Btc address or error was
generated in this process.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

341 | P a g e

13 Error in the creation
of Btc address

STrxMSS STrxMSS error in the process of new Btc
address creation.

14 Error of Locking
Wallet

STrxMSS STrxMSS error in the process of locking
Wallet.

15 Data of system error
was not found

STrxMSS STrxMSS can not find error data or error
was generated in this process.

16 Rejection message
was not found

STrxMSS STrxMSS can not find rejection message or
error was generated in this process.

17 Btc address is invalid STrxMSS STrxMSS Btc address validation result: Btc
address is invalid

18 Btc funds is not
enough

STrxMSS STrxMSS result of transaction creation: Btc
funds is not enough in the current wallet to
create transaction

19 createSingleSigTrx fnc
validation error

STrxMSS STrxMSS error in the process of
“createSingleSigTrx” function data
validation.

20 deleteTempTrx fnc
validation error

STrxMSS STrxMSS error in the process of
“deleteTempTrx” function data validation.

21 sendSingleSigTrx fnc
validation error

STrxMSS STrxMSS error in the process of
“sendSingleSigTrx” function data validation.

22 Wallet data validation
error

STrxMSS STrxMSS error in the process of validating
wallet data.

23 Transaction data
validation error

STrxMSS STrxMSS error in the process of validating
transaction data.

24 Transaction record
error

STrxMSS STrxMSS error in the process of Trx record
creation

25 UTXOs selection
problem

STrxMSS STrxMSS cannot select UTXOs for given
Wallet.

26 Error in the creation
of Private Key

STrxMSS STrxMSS error in the process of new Private
Key creation.

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

342 | P a g e

27 Error in the creation
of Public Key

STrxMSS STrxMSS error in the process of new Public
Key creation.

28 Mnemonic seed
restoring error

STrxMSS STrxMSS error in the process of Mnemonic
seed restoring

29 Wallet record error STrxMSS STrxMSS error during creation of wallet
record

30 Mnemonic code
generation error

STrxMSS STrxMSS error during generating the user
part of wallet private key

31 MNM record error STrxMSS STrxMSS error during creation of MNM
record

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

343 | P a g e

Appendix M – Blockchain Rejection

Messages
This table keeps data which should be captured by BTC_REJECTION_MSG table from “shared_data” DB. There are 4

categories at this moment [2.25]:

- Block

- Common

- Transaction

- Version

ID Message
Code

Category Message Description

1 10 Block Block is invalid for some reason (invalid proof-of-work,
invalid signature, etc)

2 11 Block Block's version is no longer supported

3 43 Block Inconsistent with a compiled-in checkpoint

4 01 Common Message could not be decoded

5 10 Transaction Transaction is invalid for some reason (invalid signature,
output value greater than input, etc.)

6 12 Transaction An input is already spent

7 40 Transaction Not mined/relayed because it is "non-standard" (type or
version unknown by the server)

8 41 Transaction One or more output amounts are below the 'dust'
threshold

9 42 Transaction Transaction does not have enough fee/priority to be
relayed or mined

10 11 Version Client is an obsolete, unsupported version

11 12 Version Duplicate version message received

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

344 | P a g e

Glossary
Definition Description

Affine coordinates In mathematics: An Affine coordinate system is a coordinate
system on an Affine Space where each coordinate is an Affine
Map to the Number Line. [3.10]

- An Affine Space is a geometric structure that generalizes
certain properties of parallel lines in Euclidean space.

- An Affine Map is a function between Affine Spaces which
preserves points, straight lines and planes.

- A Number Line is a picture of a straight line on which every

point is assumed to correspond to a real number and every real

number to a point

BIP A Bitcoin Improvement Proposal and is one of the mechanisms
used by the Bitcoin “core developers” to improve Bitcoin [2.8],
[2.9].

Bitcoin address A 160-bit hash of the ECDSA public key (public portion of a
public/private ECDSA key pair)

Block Data is permanently recorded in the Bitcoin network through
files called Blocks. A Block is a record of some or all of the most
recent Bitcoin transactions that have not yet been recorded in
any prior blocks. New blocks are added to the end of the record
(known in Bitcoin as the Block Chain), and once written, are
never changed or removed. Each block memorializes what took
place immediately before it was created [2.5].

Every block contains a hash of the previous block. This has the

effect of creating a chain of blocks from the genesis block to the

current block. Each block is guaranteed to come after the

previous block chronologically because the previous block's

hash would otherwise not be known. Each block is also

computationally impractical to modify once it has been in the

chain for a while because every block after it would also have to

be regenerated. Each block has a size limit of 1,000,000 bytes.

Block Chain A transaction database shared by all nodes participating in a

system based on the Bitcoin protocol [2.13]. A chain is valid if all

https://en.bitcoin.it/wiki/Bitcoin_address
http://en.wikipedia.org/wiki/Elliptic_Curve_DSA
https://en.bitcoin.it/wiki/Block_chain
https://en.bitcoin.it/wiki/Blocks
https://en.bitcoin.it/wiki/Hash
https://en.bitcoin.it/wiki/Genesis_block
https://en.bitcoin.it/wiki/Node

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

345 | P a g e

of the blocks and transactions within it are valid, and only if it

starts with the genesis block. For any block on the chain, there

is only one path to the genesis block [2.3].

Coinbase Transaction A special kind of transaction, has no Inputs. It is created by

miners, and there is one Coinbase transaction per Block.

Because each block comes with a reward of newly created

Bitcoins (e.g. 50 BTC for the first 210,000 blocks), the first

transaction of a block is, with few exceptions, the transaction

that grants those coins to their recipient (the Miner).

DPA attack Differential Power Analysis attack is a type of Power
consumption attack. DPA is SPA plus statistical analysis such as
data dependencies on power consumption to crack the system

Dust A transaction output is considered dust when the cost of
spending it is close to its value.
Precisely, Bitcoin Core defines dust to be an output whose fees
exceed 1/3 of its value. This computes to everything smaller
than 546 satoshis being considered dust by Bitcoin Core.

Genesis Block The first block of a block chain [2.4]. Modern versions of Bitcoin
assign it block number 0, though older versions gave it number
1.

Inputs Records which reference the funds from other previous
transactions.

Octet Sequences of eight bits. The first (leftmost) bit within an octet
has numerical value 128, while the last (rightmost) has
numerical value 1. 8 bits = 1 byte = 2 chars in the byte string

Outputs Records which determine the new owner of the transferred
Bitcoins, and which will be referenced as Inputs in future
transactions as those funds are respent.

Mnemonic Code Generally: Mnemonics aim to translate information into a form
that the brain can retain better than its original form.

In the scope of this document: A mnemonic code or mnemonic
sentence is a group of easy to remember words.

NAF or wNAF An binary signed-digit representation known as w-ary Non-

Adjacent Form of the number. It’s a unique integer
representation

https://en.bitcoin.it/w/index.php?title=Coinbase_transaction&action=edit&redlink=1
https://en.bitcoin.it/w/index.php?title=Miners&action=edit&redlink=1
https://en.bitcoin.it/wiki/Block_chain

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

346 | P a g e

For 2NAF, w = 2

i-bit integer d = (di−1 , di−2. . . d0), di ϵ {1,−1, 0}

Public Key A number that corresponds to a private key, but does not need
to be kept secret. A public key can be calculated from a private
key, but not vice versa. A public key can be used to determine if
a signature is genuine (in other words, produced with the
proper key) without requiring the private key to be divulged.

In Bitcoin, public key are either compressed or uncompressed.
Compressed public keys are 33 bytes, consisting of a prefix
either 0x02 or 0x03, and a 256-bit integer called X. The older
uncompressed keys are 65 bytes, consisting of constant prefix
(0x04), followed by two 256-bit integers called X and Y (2 * 32
bytes). The prefix of a compressed key allows for the Y value to
be derived from the X value.

1 Satoshi
All values in the Bitcoin network are integers in Satoshis (1E-8

BTC) so technically all the numbers would be multiplied by 1E8.

1 BTC = 100,000,000 Satoshi.

scriptSig Contains a signature and a public key.

SPA attack
Simple Power Annalysis attack is a type of Power consumption
attack. SPA simply interprets power consumption into visual
representation during the operation of a device or system, and
such information may leak important information about the
system.

Transaction A Cryptographically signed section of data that is broadcast to
the network and collected into blocks. It typically references
previous transactions and reassign ownership of Bitcoins from
them to one or more new bitcoin addresses. So, Transactions
have Inputs and Outputs. It is not encrypted, so it is possible to
browse and view any transaction to ever be collected into a
block [2.1].

https://en.bitcoin.it/wiki/Network
https://en.bitcoin.it/wiki/Block

Project “Intelligent Daemon System”

Detailed Design & Architecture
 PIDS-2015-07-DDA-02-07-0

Date: 2015-12-03

347 | P a g e

Project Authorisation

Project Identification Project “Intelligent Daemon System”

Assigned Priority High

Commencement Date: / / .

Executive Group Development Group

Chief Executive Officer Program Manager

Date: / / . Date: / / .

